1,048 research outputs found

    Some Applications of Polynomial Optimization in Operations Research and Real-Time Decision Making

    Full text link
    We demonstrate applications of algebraic techniques that optimize and certify polynomial inequalities to problems of interest in the operations research and transportation engineering communities. Three problems are considered: (i) wireless coverage of targeted geographical regions with guaranteed signal quality and minimum transmission power, (ii) computing real-time certificates of collision avoidance for a simple model of an unmanned vehicle (UV) navigating through a cluttered environment, and (iii) designing a nonlinear hovering controller for a quadrotor UV, which has recently been used for load transportation. On our smaller-scale applications, we apply the sum of squares (SOS) relaxation and solve the underlying problems with semidefinite programming. On the larger-scale or real-time applications, we use our recently introduced "SDSOS Optimization" techniques which result in second order cone programs. To the best of our knowledge, this is the first study of real-time applications of sum of squares techniques in optimization and control. No knowledge in dynamics and control is assumed from the reader

    Robust-to-Dynamics Optimization

    Full text link
    A robust-to-dynamics optimization (RDO) problem is an optimization problem specified by two pieces of input: (i) a mathematical program (an objective function f:Rn→Rf:\mathbb{R}^n\rightarrow\mathbb{R} and a feasible set Ω⊆Rn\Omega\subseteq\mathbb{R}^n), and (ii) a dynamical system (a map g:Rn→Rng:\mathbb{R}^n\rightarrow\mathbb{R}^n). Its goal is to minimize ff over the set S⊆Ω\mathcal{S}\subseteq\Omega of initial conditions that forever remain in Ω\Omega under gg. The focus of this paper is on the case where the mathematical program is a linear program and the dynamical system is either a known linear map, or an uncertain linear map that can change over time. In both cases, we study a converging sequence of polyhedral outer approximations and (lifted) spectrahedral inner approximations to S\mathcal{S}. Our inner approximations are optimized with respect to the objective function ff and their semidefinite characterization---which has a semidefinite constraint of fixed size---is obtained by applying polar duality to convex sets that are invariant under (multiple) linear maps. We characterize three barriers that can stop convergence of the outer approximations from being finite. We prove that once these barriers are removed, our inner and outer approximating procedures find an optimal solution and a certificate of optimality for the RDO problem in a finite number of steps. Moreover, in the case where the dynamics are linear, we show that this phenomenon occurs in a number of steps that can be computed in time polynomial in the bit size of the input data. Our analysis also leads to a polynomial-time algorithm for RDO instances where the spectral radius of the linear map is bounded above by any constant less than one. Finally, in our concluding section, we propose a broader research agenda for studying optimization problems with dynamical systems constraints, of which RDO is a special case

    Lower Bounds on Complexity of Lyapunov Functions for Switched Linear Systems

    Full text link
    We show that for any positive integer dd, there are families of switched linear systems---in fixed dimension and defined by two matrices only---that are stable under arbitrary switching but do not admit (i) a polynomial Lyapunov function of degree ≤d\leq d, or (ii) a polytopic Lyapunov function with ≤d\leq d facets, or (iii) a piecewise quadratic Lyapunov function with ≤d\leq d pieces. This implies that there cannot be an upper bound on the size of the linear and semidefinite programs that search for such stability certificates. Several constructive and non-constructive arguments are presented which connect our problem to known (and rather classical) results in the literature regarding the finiteness conjecture, undecidability, and non-algebraicity of the joint spectral radius. In particular, we show that existence of an extremal piecewise algebraic Lyapunov function implies the finiteness property of the optimal product, generalizing a result of Lagarias and Wang. As a corollary, we prove that the finiteness property holds for sets of matrices with an extremal Lyapunov function belonging to some of the most popular function classes in controls
    • …
    corecore