11 research outputs found

    Prenatal Phthalate Exposure Is Associated with Childhood Behavior and Executive Functioning

    Get PDF
    Background: Experimental and observational studies have reported biological consequences of phthalate exposure relevant to neurodevelopment. Objective: Our goal was to examine the association of prenatal phthalate exposure with behavior and executive functioning at 4-9 years of age. Methods: The Mount Sinai Children's Environmental Health Study enrolled a multiethnic prenatal population in New York City between 1998 and 2002 (n = 404). Third-trimester maternal urines were collected and analyzed for phthalate metabolites. Children (n = 188, n = 365 visits) were assessed for cognitive and behavioral development between the ages of 4 and 9 years. Results: In multivariate adjusted models, increased loge concentrations of low molecular weight (LMW) phthalate metabolites were associated with poorer scores on the aggression [β = 1.24; 95% confidence interval (CI), 0.15- 2.34], conduct problems (β = 2.40; 95% CI, 1.34-3.46), attention problems (β = 1.29; 95% CI, 0.16- 2.41), and depression (β = 1.18; 95% CI, 0.11-2.24) clinical scales; and externalizing problems (β = 1.75; 95% CI, 0.61-2.88) and behavioral symptom index (β = 1.55; 95% CI, 0.39-2.71) composite scales. Increased loge concentrations of LMW phthalates were also associated with poorer scores on the global executive composite index (β = 1.23; 95% CI, 0.09-2.36) and the emotional control scale (β = 1.33; 95% CI, 0.18- 2.49). Conclusion: Behavioral domains adversely associated with prenatal exposure to LMW phthalates in our study are commonly found to be affected in children clinically diagnosed with conduct or attention deficit hyperactivity disorders

    Seronegative Myasthenia Gravis, as a Rare Autoimmune Condition in Turner Syndrome

    No full text
    Girls with Turner syndrome (TS), especially with isochromosome 46,X,i(X)(q10), are prone to develop autoimmunity. Associations of several autoimmune conditions with TS have been frequently described in the past. However, the unique combination of TS and myasthenia gravis (MG) has been reported only once before in a girl with mosaic monosomy 45,X/46,XX. Here, we present the second case of a girl affected with seronegative MG but with mosaic isochromosome TS. This is a child with developmental delay presented with muscle weakness, frequent fall, and bilateral ptosis. Diagnosis of MG was made based on positive Tensilon and electromyography tests and excellent response to intravenous immunoglobulin. At the age of 11 years due to short stature and developmental delay, a karyotype was done and revealed the mosaic isochromosome 45,X/46,X,i(X)(q10). Overall, clinicians should be aware of the vulnerability of girls with TS to autoimmunity, especially if the isochromosome 46,X,i(X)(q10) karyotype is identified. Furthermore, if a child with TS develops muscle weakness, ptosis, or ophthalmoplegia, MG should also be included in the differential diagnosis, particularly if other concurrent autoimmune conditions are present
    corecore