3 research outputs found

    Neuroendocrine Abnormalities Following Traumatic Brain Injury: An Important Contributor to Neuropsychiatric Sequelae

    No full text
    Neuropsychiatric symptoms following traumatic brain injury (TBI) are common and contribute negatively to TBI outcomes by reducing overall quality of life. The development of neurobehavioral sequelae, such as concentration deficits, depression, anxiety, fatigue, and loss of emotional well-being has historically been attributed to an ambiguous “post-concussive syndrome,” considered secondary to frank structural injury and axonal damage. However, recent research suggests that neuroendocrine dysfunction, specifically hypopituitarism, plays an important role in the etiology of these symptoms. This post-head trauma hypopituitarism (PHTH) has been shown in the past two decades to be a clinically prevalent phenomenon, and given the parallels between neuropsychiatric symptoms associated with non-TBI-induced hypopituitarism and those following TBI, it is now acknowledged that PHTH is likely a substantial contributor to these impairments. The current paper seeks to provide an overview of hypothesized pathophysiological mechanisms underlying neuroendocrine abnormalities after TBI, and to emphasize the significance of this phenomenon in the development of the neurobehavioral problems frequently seen after head trauma

    Abstract 002: Examining Pulling Force Using Combined Stentreiver and Aspiration Technique in a Medium Vessel Thrombectomy Model

    No full text
    Introduction With the advent of smaller stent retrievers (SR) and aspiration catheters (AC) capable of accessing more distal locations, distal and medium vessel occlusions (DMVO) are emerging as promising targets for endovascular thrombectomy (EVT). However, considering the vulnerability of distal vessels to injury, it is imperative to understand the safety of various frontline techniques in these challenging scenarios. Using a vascular flow model, we sought to investigate the optimal size, strategy, and positioning of a stent retriever and aspiration catheter to minimize the pulling force exerted on the M2 vasculature. Methods We used a silicone vascular flow model with moderate tortuosity that replicated the left‐sided anterior circulation, including middle cerebral artery (MCA) branches in the M2 territory. An 8 French Cook Shuttle guide sheath was inserted coaxially with a Catalyst 7‐132 cm aspiration catheter and TrevoTrak 21 microcatheter. To measure pulling force, an Imada force gauge DST‐1A was placed at the M2 and a DST‐11A at the proximal end of the microcatheter. The Solitaire 4x20 mm Solitaire stent‐retriever was pulled at 4 mm/sec with the AC in the proximal cavernous carotid segment (NoAsp), proximal M1 (M1P), and distal M1 (M1D), a total of 8 times per AC position, using the ingestion technique. The pinching technique was also examined using the 4x20mm stent. Results The average pulling force measured on M2 using the 4x20mm stent was 169.1mN with the AC docked in the proximal NoAsp position, 26.5mN with the AC at M1P, and 23.0mN at M1D (p<0.0001). The difference in pulling force between M1P and M1D was not significant (p=0.472). The average pulling force exerted on M2 from pinching the 4x20mm stent with the AC at M1D, rather than ingestion of the stent at M1D, was 62.9mN. Average pulling force was noted to decrease from the first to the last run in most cases, with an average drop of 26.4% at the fourth run. Conclusion ADAPT and stent‐retrieval have recently been shown to be comparable in DMVO (1), however some studies have suggested a combined approach may reduce bleeding complications compared to stent‐retrieval alone (2). In our in‐vitro model, we demonstrated that positioning the AC in M1 (M1D or M1P) reduced the pulling force exerted by the stent‐retriever on M2 compared with AC placement in the cavernous carotid (NoAsp). The pulling force exerted from pinching the 4x20mm stent with the AC at M1D was higher than with the ingestion technique, for which the explanation is uncertain, but may be due to the additional friction in the M1 segment. Taken together, these findings suggest a combined approach decreases frictional pulling force during stent‐retrieval and is safer than SR alone. We also note that the pulling force of each stent decreased after its third usage, in line with the manufacturer’s instructions for use, which suggest no more than 3 retrievals per stent (3). Future experiments will compare a wider range of techniques using stents of varying sizes to better clarify factors associated with decreased pulling force in EVT

    Antithrombotic Treatment for Stroke Prevention in Cervical Artery Dissection: The STOP-CAD Study.

    No full text
    Background: Small, randomized trials of cervical artery dissection (CAD) patients showed conflicting results regarding optimal stroke prevention strategies. We aimed to compare outcomes in patients with CAD treated with antiplatelets versus anticoagulation. Methods: This is a multi-center observational retrospective international study (16 countries, 63 sites) that included CAD patients without major trauma. The exposure was antithrombotic treatment type (anticoagulation vs. antiplatelets) and outcomes were subsequent ischemic stroke and major hemorrhage (intracranial or extracranial hemorrhage). We used adjusted Cox regression with Inverse Probability of Treatment Weighting (IPTW) to determine associations between anticoagulation and study outcomes within 30 and 180 days. The main analysis used an "as treated" cross-over approach and only included outcomes occurring on the above treatments. Results: The study included 3,636 patients [402 (11.1%) received exclusively anticoagulation and 2,453 (67.5%) received exclusively antiplatelets]. By day 180, there were 162 new ischemic strokes (4.4%) and 28 major hemorrhages (0.8%); 87.0% of ischemic strokes occurred by day 30. In adjusted Cox regression with IPTW, compared to antiplatelet therapy, anticoagulation was associated with a non-significantly lower risk of subsequent ischemic stroke by day 30 (adjusted HR 0.71 95% CI 0.45-1.12, p=0.145) and by day 180 (adjusted HR 0.80 95% CI 0.28-2.24, p=0.670). Anticoagulation therapy was not associated with a higher risk of major hemorrhage by day 30 (adjusted HR 1.39 95% CI 0.35-5.45, p=0.637) but was by day 180 (adjusted HR 5.56 95% CI 1.53-20.13, p=0.009). In interaction analyses, patients with occlusive dissection had significantly lower ischemic stroke risk with anticoagulation (adjusted HR 0.40 95% CI 0.18-0.88) (Pinteraction=0.009). Conclusions: Our study does not rule out a benefit of anticoagulation in reducing ischemic stroke risk, particularly in patients with occlusive dissection. If anticoagulation is chosen, it seems reasonable to switch to antiplatelet therapy before 180 days to lower the risk of major bleeding. Large prospective studies are needed to validate our findings
    corecore