44 research outputs found

    Adsorptive Removal of Refractory Sulphur and Nitrogen Compounds from Transportation Fuels

    Get PDF
    The reduction of sulphur in transportation fuel has gained significant importance as the regulatory agencies worldwide react to air quality concerns and the impact of sulphur oxides on the environment. The overall objective of this research was to identify, develop and characterize, based on underlying scientific principles, sorbents that are effective in removal of refractory sulphur compounds from fuel through the process of selective adsorption. It was determined that impregnation of powdered activated carbon with a transition metal (TM) significantly boosted the adsorption performance of the activated carbon. It is hypothesized that the impregnation resulted in the formation of new adsorptive sites that strongly interacted with the lone pairs of electrons on sulphur and nitrogen while having minor impact on the existing oxygen functional groups on the surface of the activated carbon. The percent loading of the TM was determined through wet adsorption study. The best performing sorbent was shown to have maximum adsorption capacities of approximately 1.77 and 0.76 mmol-S/g-sorbent for DBT and 4,6 DMDBT, respectively, with approximately 100% regenerability through solvent wash and thermal treatment. On average, the PTM impregnation showed approximately 137% increase in adsorption capacity of the activated carbon. The sorbent also has good adsorption capacities for organo-nitrogen compounds (i.e., quinoline and carbazole) and a low selectivity towards aromatics, which is desired in adsorptive desulphurization. The surface morphology of the activated carbon, the oxygen functional groups on the surface of the activated carbon, as well as strong (chemisorption) interaction between the TM’s partly vacant and far reaching ‘d’ orbital and lone pair electrons on sulphur and nitrogen are considered to be the main contributing factors to the observed enhancement. It was established in this study that the adsorption isotherms of the impregnated activated carbons best fit Sips isotherm equation, which is a combination of the Langmuir and Freundlich equations. This finding fits well with our initial hypothesis regarding the introduction of new adsorptive sites as a result of TM impregnation and that the sites did not fit well with Langmuir’s monolayer and uniform adsorption mechanism. A kinetic study of the sulphur adsorption using a flow reactor showed a good fit with pseudo second order kinetic model, indicative of an adsorption that is highly dependent on the concentration of available sites on the surface of the sorbent. On average, as expected, the TM impregnated ACC exhibited a higher initial rate of adsorption. The adsorption onto TM sites tends to be more exothermic than adsorption (mainly physisorption) on activated carbon. Therefore, more thermodynamically favoured chemisorption is expected to occur more rapidly than physisorption. It was determined that on average, the initial adsorption rate does not change significantly with temperature while the sulphur adsorption capacity decreases with increase in temperature. It is postulated that the increase in temperature increases surface diffusivity but impedes diffusion flux. The impediment of the diffusion flux will result in reduction in adsorbed quantity. It was also shown that the intra-particle diffusion exists in the adsorption of DBT on TM impregnated activated carbon, however, it is not likely that the overall adsorption is controlled or noticeable impacted by it. As the temperature of the reactor increases the Weber-Morris intra-particle diffusion plot moves away from the origin, and thus intra-particle diffusion becomes less of a controlling mechanism. This further confirms the fact that the boundary layer (i.e., surface diffusion) and potentially adsorptive interactions at the surface are the dominating mechanisms in the sulphur adsorption onto TM impregnated activated carbon. It was determined that the distribution of TM species on the surface of the activated carbon is relatively inhomogeneous, with some areas showing well dispersed TM species while other areas showing large clusters. Different impregnation method that can improve dispersion on the surface may significantly enhance adsorption performance of the sorbent. Furthermore, in this study impregnation of activated carbon using several other transition metals were examined. It was determined that other less expensive transition metals can also improve the adsorption performance of the activated carbon. Further study on less expensive options for impregnating the activated carbon may be beneficial.1 yea

    Single-arm prospective interventional study assessing feasibility of using gallium-68 ventilation and perfusion PET/CT to avoid functional lung in patients with stage III non-small cell lung cancer

    Get PDF
    BACKGROUND: In the curative-intent treatment of locally advanced lung cancer, significant morbidity and mortality can result from thoracic radiation therapy. Symptomatic radiation pneumonitis occurs in one in three patients and can lead to radiation-induced fibrosis. Local failure occurs in one in three patients due to the lungs being a dose-limiting organ, conventionally restricting tumour doses to around 60 Gy. Functional lung imaging using positron emission tomography (PET)/CT provides a geographic map of regional lung function and preclinical studies suggest this enables personalised lung radiotherapy. This map of lung function can be integrated into Volumetric Modulated Arc Therapy (VMAT) radiotherapy planning systems, enabling conformal avoidance of highly functioning regions of lung, thereby facilitating increased doses to tumour while reducing normal tissue doses. METHODS AND ANALYSIS: This prospective interventional study will investigate the use of ventilation and perfusion PET/CT to identify highly functioning lung volumes and avoidance of these using VMAT planning. This single-arm trial will be conducted across two large public teaching hospitals in Australia. Twenty patients with stage III non-small cell lung cancer will be recruited. All patients enrolled will receive dose-escalated (69 Gy) functional avoidance radiation therapy. The primary endpoint is feasibility with this achieved if ≥15 out of 20 patients meet pre-defined feasibility criteria. Patients will be followed for 12 months post-treatment with serial imaging, biomarkers, toxicity assessment and quality of life assessment. DISCUSSION: Using advanced techniques such as VMAT functionally adapted radiation therapy may enable safe moderate dose escalation with an aim of improving local control and concurrently decreasing treatment related toxicity. If this technique is proven feasible, it will inform the design of a prospective randomised trial to assess the clinical benefits of functional lung avoidance radiation therapy. ETHICS AND DISSEMINATION: This study was approved by the Peter MacCallum Human Research Ethics Committee. All participants will provide written informed consent. Results will be disseminated via publications. TRIALS REGISTRATION NUMBER: NCT03569072; Pre-results

    Molecular imaging phenotyping for selecting and monitoring radioligand therapy of neuroendocrine neoplasms

    Get PDF
    Neuroendocrine neoplasia (NEN) is an umbrella term that includes a widely heterogeneous disease group including well-differentiated neuroendocrine tumours (NETs), and aggressive neuroendocrine carcinomas (NECs). The site of origin of the NENs is linked to the intrinsic tumour biology and is predictive of the disease course. It is understood that NENs demonstrate significant biologic heterogeneity which ultimately translates to widely varying clinical presentations, disease course and prognosis. Thus, significant emphasis is laid on the pre-therapy evaluation of markers that can help predict tumour behavior and dynamically monitors the response during and after treatment. Most well-differentiated NENs express somatostatin receptors (SSTRs) which make them appropriate for peptide receptor radionuclide therapy (PRRT). However, the treatment outcomes of PRRT depend heavily on the adequacy of patient selection by molecular imaging phenotyping not only utilizing pre-treatment SSTR PET bu

    Relationship between clinicopathologic factors and FDG avidity in radioiodine-negative recurrent or metastatic differentiated thyroid carcinoma

    Get PDF
    BACKGROUND: In this study, we investigated the relationship between clinicopathologic factors, BRAF METHODS: From 2015 to 2018 all patients with suspected recurrent or metastatic radioiodine-negative DTC patients who underwent FDG positron emission tomography/computed tomography (PET/CT) were retrospectively reviewed. Suspected lesions on FDG PET/CT were biopsied and underwent BRAF RESULTS: Sixty-three consecutive patients, 55 (87.3%) female, with median age of 48 (range 17-81) were included. The majority of patients had BRAF CONCLUSION: The majority of recurrent or metastatic RAI-negative DTC have BRA

    A social work study on major causes of educational failure

    Get PDF
    Education is one of the most important parts of every one’s life, higher education helps people get better job offers and build their future, more successfully. Any failure in educational programs could possibly hurt society as well as country’s economy. Therefore, we need to find the major causes of educational failure and setup appropriate plans to reduce the undesirable consequences. In this study, we perform a comprehensive study on previous studies on finding major causes of educational failure in different provinces of Iran and try to focus on major factors influencing this problem. The results of our survey have concluded that there are three common factors including little interest in learning, working along with education and living status. The implementation of some statistical tests has revealed that these factors have some moderate impacts on educational failure

    Imaging for assessment of cancer treatment response to immune checkpoint inhibitors can be complementary in identifying hypophysitis

    Get PDF
    IntroductionHypophysitis is reported in 8.5%–14% of patients receiving combination immune checkpoint inhibition (cICI) but can be a diagnostic challenge. This study aimed to assess the role of routine diagnostic imaging performed during therapeutic monitoring of combination anti-CTLA-4/anti-PD-1 treatment in the identification of hypophysitis and the relationship of imaging findings to clinical diagnostic criteria.MethodsThis retrospective cohort study identified patients treated with cICI between January 2016 and January 2019 at a quaternary melanoma service. Medical records were reviewed to identify patients with a documented diagnosis of hypophysitis based on clinical criteria. Available structural brain imaging with magnetic resonance imaging (MRI) or computed tomography (CT) of the brain and 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography with computed tomography (FDG-PET/CT) were assessed retrospectively. The main radiological outcome measures were a relative change in pituitary size or FDG uptake temporally attributed to cICI.ResultsThere were 162 patients (median age 60 years, 30% female) included. A total of 100 and 134 had serial CT/MRI of the brain and FDG-PET/CT, respectively. There were 31 patients who had a documented diagnosis of hypophysitis and an additional 20 who had isolated pituitary imaging findings. The pituitary gland enlargement was mild, and the largest absolute gland size was 13 mm, with a relative increase of 7 mm from baseline. There were no cases of optic chiasm compression. Pituitary enlargement and increased FDG uptake were universally transient. High-dose glucocorticoid treatment for concurrent irAEs prevented assessment of the pituitary–adrenal axis in 90% of patients with isolated imaging findings.ConclusionCareful review of changes in pituitary characteristics on imaging performed for assessment of therapeutic response to iICI may lead to increased identification and more prompt management of cICI-induced hypophysitis

    Overcurrent and Overload Protection of Directly Voltage-Controlled Distributed Resources in a Microgrid

    No full text

    Challenges of Power Converter Operation and Control Under Ferroresonance Conditions

    No full text
    corecore