16,484 research outputs found

    Kinematic Self-Similar Solutions of Locally Rotationally Symmetric Spacetimes

    Full text link
    This paper contains locally rotationally symmetric kinematic self-similar perfect fluid and dust solutions. We consider three families of metrics which admit kinematic self-similar vectors of the first, second, zeroth and infinite kinds, not only for the tilted fluid case but also for the parallel and orthogonal cases. It is found that the orthogonal case gives contradiction both in perfect fluid and dust cases for all the three metrics while the tilted case reduces to the parallel case in both perfect fluid and dust cases for the second metric. The remaining cases give self-similar solutions of different kinds. We obtain a total of seventeen independent solutions out of which two are vacuum. The third metric yields contradiction in all the cases.Comment: 17 pages, accepted for publication Brazilian J. Physic

    The Hardness of Finding Linear Ranking Functions for Lasso Programs

    Full text link
    Finding whether a linear-constraint loop has a linear ranking function is an important key to understanding the loop behavior, proving its termination and establishing iteration bounds. If no preconditions are provided, the decision problem is known to be in coNP when variables range over the integers and in PTIME for the rational numbers, or real numbers. Here we show that deciding whether a linear-constraint loop with a precondition, specifically with partially-specified input, has a linear ranking function is EXPSPACE-hard over the integers, and PSPACE-hard over the rationals. The precise complexity of these decision problems is yet unknown. The EXPSPACE lower bound is derived from the reachability problem for Petri nets (equivalently, Vector Addition Systems), and possibly indicates an even stronger lower bound (subject to open problems in VAS theory). The lower bound for the rationals follows from a novel simulation of Boolean programs. Lower bounds are also given for the problem of deciding if a linear ranking-function supported by a particular form of inductive invariant exists. For loops over integers, the problem is PSPACE-hard for convex polyhedral invariants and EXPSPACE-hard for downward-closed sets of natural numbers as invariants.Comment: In Proceedings GandALF 2014, arXiv:1408.5560. I thank the organizers of the Dagstuhl Seminar 14141, "Reachability Problems for Infinite-State Systems", for the opportunity to present an early draft of this wor

    A Comment on Budach's Mouse-in-an-Octant Problem

    Full text link
    Budach's Mouse-in-an-Octant Problem (attributed to Lothar Budach in a 1980 article by van Emde Boas and Karpinski) concerns the behaviour of a very simple finite-state machine ("the mouse") moving on the integer two-dimensional grid. Its decidability is apparently still open. This note sketches a proof that an extended version of the problem (a super-mouse) is undecidable.Comment: 3 pages, 2 bibliographic reference
    • …
    corecore