99 research outputs found

    On Fixation of Activated Random Walks

    Full text link
    We prove that for the Activated Random Walks model on transitive unimodular graphs, if there is fixation, then every particle eventually fixates, almost surely. We deduce that the critical density is at most 1. Our methods apply for much more general processes on unimodular graphs. Roughly put, our result apply whenever the path of each particle has an automorphism invariant distribution and is independent of other particles' paths, and the interaction between particles is automorphism invariant and local. This allows us to answer a question of Rolla and Sidoravicius, in a more general setting then had been previously known (by Shellef).Comment: 5 page

    Cross-Lingual Alignment of Contextual Word Embeddings, with Applications to Zero-shot Dependency Parsing

    Full text link
    We introduce a novel method for multilingual transfer that utilizes deep contextual embeddings, pretrained in an unsupervised fashion. While contextual embeddings have been shown to yield richer representations of meaning compared to their static counterparts, aligning them poses a challenge due to their dynamic nature. To this end, we construct context-independent variants of the original monolingual spaces and utilize their mapping to derive an alignment for the context-dependent spaces. This mapping readily supports processing of a target language, improving transfer by context-aware embeddings. Our experimental results demonstrate the effectiveness of this approach for zero-shot and few-shot learning of dependency parsing. Specifically, our method consistently outperforms the previous state-of-the-art on 6 tested languages, yielding an improvement of 6.8 LAS points on average.Comment: NAACL 201

    Stigmergy-based, Dual-Layer Coverage of Unknown Indoor Regions

    Full text link
    We present algorithms for uniformly covering an unknown indoor region with a swarm of simple, anonymous and autonomous mobile agents. The exploration of such regions is made difficult by the lack of a common global reference frame, severe degradation of radio-frequency communication, and numerous ground obstacles. We propose addressing these challenges by using airborne agents, such as Micro Air Vehicles, in dual capacity, both as mobile explorers and (once they land) as beacons that help other agents navigate the region. The algorithms we propose are designed for a swarm of simple, identical, ant-like agents with local sensing capabilities. The agents enter the region, which is discretized as a graph, over time from one or more entry points and are tasked with occupying all of its vertices. Unlike many works in this area, we consider the requirement of informing an outside operator with limited information that the coverage mission is complete. Even with this additional requirement we show, both through simulations and mathematical proofs, that the dual role concept results in linear-time termination, while also besting many well-known algorithms in the literature in terms of energy use

    Roles of intrinsically disordered regions in transcription factor search

    Full text link
    Transcription Factors (TFs) are proteins that regulate gene expression. The regulation mechanism is via the binding of a TF to a specific part of the gene associated with it, the TF's target. For the regulation to be effective, the TF has to be able to bind to the correct target and it should do so fast enough to allow the cell an appropriate reaction time to, e.g., the discovery or food or the detection of toxins. At the same time, the search process is limited to diffusive (slow) motion and to an environment saturated with ``false" targets, other parts of the DNA with similar sequences. In eukaryotic cells many TFs have an Intrinsically Disordered Region (IDR), --a long polymeric ``tail" constructed of hundreds of amino acids. The IDR of certain TFs were shown to take a key part in the search process and in this letter we develop a model that attempts to explain its contribution. We show that the IDR enables high affinity of the TF for its corresponding target and that the manner in which it does so could also shorten the search time

    Evaluating the Ripple Effects of Knowledge Editing in Language Models

    Full text link
    Modern language models capture a large body of factual knowledge. However, some facts can be incorrectly induced or become obsolete over time, resulting in factually incorrect generations. This has led to the development of various editing methods that allow updating facts encoded by the model. Evaluation of these methods has primarily focused on testing whether an individual fact has been successfully injected, and if similar predictions for other subjects have not changed. Here we argue that such evaluation is limited, since injecting one fact (e.g. ``Jack Depp is the son of Johnny Depp'') introduces a ``ripple effect'' in the form of additional facts that the model needs to update (e.g.``Jack Depp is the sibling of Lily-Rose Depp''). To address this issue, we propose a novel set of evaluation criteria that consider the implications of an edit on related facts. Using these criteria, we then construct \ripple{}, a diagnostic benchmark of 5K factual edits, capturing a variety of types of ripple effects. We evaluate prominent editing methods on \ripple{}, showing that current methods fail to introduce consistent changes in the model's knowledge. In addition, we find that a simple in-context editing baseline obtains the best scores on our benchmark, suggesting a promising research direction for model editing

    Bidirectional optogenetic control of inhibitory neurons in freely-moving mice

    Full text link
    Objective: Optogenetic manipulations of excitable cells enable activating or silencing specific types of neurons. By expressing two types of exogenous proteins, a single neuron can be depolarized using light of one wavelength and hyperpolarized with another. However, routing two distinct wavelengths into the same brain locality typically requires bulky optics that cannot be implanted on the head of a freely-moving animal. Methods: We developed a lens-free approach for constructing dual-color head-mounted, fiber-based optical units: any two wavelengths can be combined. Results: Here, each unit was comprised of one 450 nm and one 638 nm laser diode, yielding light power of 0.4 mW and 8 mW at the end of a 50 micrometer multimode fiber. To create a multi-color/multi-site optoelectronic device, a four-shank silicon probe mounted on a microdrive was equipped with two dual-color and two single-color units, for a total weight under 3 g. Devices were implanted in mice expressing the blue-light sensitive cation channel ChR2 and the red-light sensitive chloride pump Jaws in parvalbumin-immunoreactive (PV) inhibitory neurons. The combination of dual-color units with recording electrodes was free from electromagnetic interference, and device heating was under 7{\deg}C even after prolonged operation. Conclusion: Using these devices, the same cortical PV cell could be activated and silenced. This was achieved for multiple cells both in neocortex and hippocampus of freely-moving mice. Significance: This technology can be used for controlling spatially intermingled neurons that have distinct genetic profiles, and for controlling spike timing of cortical neurons during cognitive tasks.Comment: 11 pages, 9 figure
    • …
    corecore