3 research outputs found

    Cognitive Correlates of Digital Clock Drawing Metrics in Older Adults with and without Mild Cognitive Impairment

    No full text
    Background: A digital version of the clock drawing test (dCDT) provides new latency and graphomotor behavioral measurements. These variables have yet to be validated with external neuropsychological domains in non-demented adults. Objective: The current investigation reports on cognitive constructs associated with selected dCDT latency and graphomotor variables and compares performances between individuals with mild cognitive impairment (MCI) and non-MCI peers. Methods: 202 non-demented older adults (age 68.79 ± 6.18, 46% female, education years 16.02 ± 2.70) completed the dCDT and a comprehensive neuropsychological protocol. dCDT variables of interest included: total completion time (TCT), pre-first hand latency (PFHL), post-clock face latency (PCFL), and clock face area (CFA). We also explored variables of percent time drawing (i.e., 'ink time') versus percent time not drawing (i.e., 'think time'). Neuropsychological domains of interest included processing speed, working memory, language, and declarative memory. Results: Adjusting for age and premorbid cognitive reserve metrics, command TCT positively correlated with multiple cognitive domains; PFHL and PCFL negatively associated with worse performance on working memory and processing speed tests. For Copy, TCT, PCFL, and PFHL negatively correlated with processing speed, and CFA negatively correlated with language. Between-group analyses show MCI participants generated slower command TCT, produced smaller CFA, and required more command 'think' (% Think) than 'ink' (% Ink) time. Conclusion: Command dCDT variables of interest were primarily processing speed and working memory dependent. MCI participants showed dCDT differences relative to non-MCI peers, suggesting the dCDT may assist with classification. Results document cognitive construct validation to digital metrics of clock drawing.National Science Foundation (Grant 1404333

    Proof of concept: digital clock drawing behaviors prior to transcatheter aortic valve replacement may predict length of hospital stay and cost of care

    Get PDF
    Aims: Reduced pre-operative cognitive functioning in older adults is a risk factor for postoperative complications, but it is unknown if preoperative digitally-acquired clock drawing test (CDT) cognitive screening variables, which allow for more nuanced examination of patient performance, may predict lengthier hospital stay and greater cost of hospital care. This issue is particularly relevant for older adults undergoing transcatheter aortic valve replacement (TAVR), as this surgical procedure is chosen for intermediate-risk older adults needing aortic replacement. This proof of concept research explored if specific latency and graphomotor variables indicative of planning from digitally-acquired command and copy clock drawing would predict post-TAVR duration and cost of hospitalization, over and above age, education, American Society of Anesthesiologists (ASA) physical status classification score, and frailty. Methods: Form January 2018 to December 2019, 162 out of 190 individuals electing TAVR completed digital clock drawing as part of a hospital wide cognitive screening program. Separate hierarchical regressions were computed for the command and copy conditions of the CDT and assessed how a-priori selected clock drawing metrics (total time to completion, ideal digit placement difference, and hour hand distance from center; included within the same block) incrementally predicted outcome, as measured by R2 change significance values. Results: Above and beyond age, education, ASA physical status classification score, and frailty, only digitally-acquired CDT copy performance explained significant variance for length of hospital stay (9.5%) and cost of care (8.9%). Conclusions: Digital variables from clock copy condition provided predictive value over common demographic and comorbidity variables. We hypothesize this is due to the sensitivity of the copy condition to executive dysfunction, as has been shown in previous studies for subtypes of cognitive impairment. Individuals undergoing TAVR procedures are often frail and executively compromised due to their cerebrovascular disease. We encourage additional research on the value of digitally-acquired clock drawing within different surgery types. Type of cognitive impairment and the value of digitally-acquired CDT command and copy parameters in other surgeries remain unknown.</jats:p

    Normative References for Graphomotor and Latency Digital Clock Drawing Metrics for Adults Age 55 and Older: Operationalizing the Production of a Normal Appearing Clock

    No full text
    Background: Relative to the abundance of publications on dementia and clock drawing, there is limited literature operationalizing ‘normal’ clock production. Objective: To operationalize subtle behavioral patterns seen in normal digital clock drawing to command and copy conditions. Methods: From two research cohorts of cognitively-well participants age 55 plus who completed digital clock drawing to command and copy conditions (n = 430), we examined variables operationalizing clock face construction, digit placement, clock hand construction, and a variety of time-based, latency measures. Data are stratified by age, education, handedness, and number anchoring. Results: Normative data are provided in supplementary tables. Typical errors reported in clock research with dementia were largely absent. Adults age 55 plus produce symmetric clock faces with one stroke, with minimal overshoot and digit misplacement, and hands with expected hour hand to minute hand ratio. Data suggest digitally acquired graphomotor and latency differences based on handedness, age, education, and anchoring. Conclusion: Data provide useful benchmarks from which to assess digital clock drawing performance in Alzheimer’s disease and related dementias.</jats:p
    corecore