5 research outputs found

    On the Supersymplectic Homogeneous Superspace Underlying the OSp(1/2) Coherent States

    Get PDF
    In this work we extend Onofri and Perelomov's coherent states methods to the recently introduced OSp(1/2)OSp(1/2) coherent states. These latter are shown to be parametrized by points of a supersymplectic supermanifold, namely the homogeneous superspace OSp(1/2)/U(1)OSp(1/2)/U(1), which is clearly identified with a supercoadjoint orbit of OSp(1/2)OSp(1/2) by exhibiting the corresponding equivariant supermoment map. Moreover, this supermanifold is shown to be a nontrivial example of Rothstein's supersymplectic supermanifolds. More precisely, we show that its supersymplectic structure is completely determined in terms of SU(1,1)SU(1,1)-invariant (but unrelated) K\"ahler 22-form and K\"ahler metric on the unit disc. This result allows us to define the notions of a superK\"ahler supermanifold and a superK\"ahler superpotential, the geometric structure of the former being encoded into the latter.Comment: 19 pgs, PlainTeX, Preprint CRM-185

    Supercoherent States, Super K\"ahler Geometry and Geometric Quantization

    Full text link
    Generalized coherent states provide a means of connecting square integrable representations of a semi-simple Lie group with the symplectic geometry of some of its homogeneous spaces. In the first part of the present work this point of view is extended to the supersymmetric context, through the study of the OSp(2/2) coherent states. These are explicitly constructed starting from the known abstract typical and atypical representations of osp(2/2). Their underlying geometries turn out to be those of supersymplectic OSp(2/2) homogeneous spaces. Moment maps identifying the latter with coadjoint orbits of OSp(2/2) are exhibited via Berezin's symbols. When considered within Rothstein's general paradigm, these results lead to a natural general definition of a super K\"ahler supermanifold, the supergeometry of which is determined in terms of the usual geometry of holomorphic Hermitian vector bundles over K\"ahler manifolds. In particular, the supergeometry of the above orbits is interpreted in terms of the geometry of Einstein-Hermitian vector bundles. In the second part, an extension of the full geometric quantization procedure is applied to the same coadjoint orbits. Thanks to the super K\"ahler character of the latter, this procedure leads to explicit super unitary irreducible representations of OSp(2/2) in super Hilbert spaces of L2L^2 superholomorphic sections of prequantum bundles of the Kostant type. This work lays the foundations of a program aimed at classifying Lie supergroups' coadjoint orbits and their associated irreducible representations, ultimately leading to harmonic superanalysis. For this purpose a set of consistent conventions is exhibited.Comment: 53 pages, AMS-LaTeX (or LaTeX+AMSfonts
    corecore