11 research outputs found

    Hybrid Silicon Nanowires for Solar Cell Applications

    Get PDF
    The global human population has been growing by around 1.1% per year; such growth rate will lead the humanity to cross the 10 billion-people threshold by the end of the first half of this century. Such increase is already putting a huge strain on the nonrenewable sources of energy like fossil fuel, which will run out and come to an end in few decades. Due to these social and economic trends, renewable sources of energy, such as solar cells, have attracted a huge interest as the ultimate alternative to solve humanity’s problems. Among several emerging materials, porous silicon nanowires (PSiNWs) become an active research subject nowadays in photovoltaic application mainly due to its good light trapping effect. The etched nanowires obtained by using metal-assisted chemical etching method (MACE) can reach a low reflection in the visible range. Recently, hybrid silicon nanowires/organic solar cells have been studied for low-cost Si photovoltaic devices because the Schottky junction between the Si and organic material can be formed by solution processes at low temperature. In this chapter, we will present the synthesis of SiNWs and the last progress on the fabrication of hybrid solar cells using various organic semiconductors

    A review on MoS₂ properties, synthesis, sensing applications and challenges

    No full text
    Molybdenum disulfide (MoS₂) is one of the compounds discussed nowadays due to its outstanding properties that allowed its usage in different applications. Its band gap and its distinctive structure make it a promising material to substitute graphene and other semiconductor devices. It has different applications in electronics especially sensors like optical sensors, biosensors, electrochemical biosensors that play an important role in the detection of various diseases’ like cancer and Alzheimer. It has a wide range of energy applications in batteries, solar cells, microwave, and Terahertz applications. It is a promising material on a nanoscale level, with favorable characteristics in spintronics and magnetoresistance. In this review, we will discuss MoS₂ properties, structure and synthesis techniques with a focus on its applications and future challenges.Published versionThis research was funded by United Arab Emirates University UPAR project, grant number 31N393

    Recent Advances in the Design of Plasmonic Au/TiO2 Nanostructures for Enhanced Photocatalytic Water Splitting

    No full text
    International audiencePlasmonic nanostructures have played a key role in extending the activity of photocatalysts to the visible light spectrum, preventing the electron-hole combination and providing with hot electrons to the photocatalysts, a crucial step towards efficient broadband photocatalysis. One plasmonic photocatalyst, Au/TiO2, is of a particular interest because it combines chemical stability, suitable electronic structure, and photoactivity for a wide range of catalytic reactions such as water splitting. In this review, we describe key mechanisms involving plasmonics to enhance photocatalytic properties leading to efficient water splitting such as production and transport of hot electrons through advanced analytical techniques used to probe the photoactivity of plasmonics in engineered Au/TiO2 devices. This work also discusses the emerging strategies to better design plasmonic photocatalysts and understand the underlying mechanisms behind the enhanced photoactivity of plasmon-assisted catalysts

    Improved Power Conversion Efficiency with Tunable Electronic Structures of the Cation-Engineered [A<sub>i</sub>]PbI<sub>3</sub> Perovskites for Solar Cells: First-Principles Calculations

    No full text
    Higher power conversion efficiencies for photovoltaic devices can be achieved through simple and low production cost processing of APbI3(A=CH3NH3,CHN2H4,…) perovskites. Due to their limited long-term stability, however, there is an urgent need to find alternative structural combinations for this family of materials. In this study, we propose to investigate the prospects of cation-substitution within the A-site of the APbI3 perovskite by selecting nine substituting organic and inorganic cations to enhance the stability of the material. The tolerance and the octahedral factors are calculated and reported as two of the most critical geometrical features, in order to assess which perovskite compounds can be experimentally designed. Our results showed an improvement in the thermal stability of the organic cation substitutions in contrast to the inorganic cations, with an increase in the power conversion efficiency of the Hydroxyl-ammonium (NH3OH) substitute to η = 25.84%

    Experimental and Theoretical Investigation of the Synthesis, Electronic and Magnetic Properties of MnFe2O4 Spinel Ferrite

    No full text
    MnFe2O4 ferrite nanoparticle was synthesized via the sol&ndash;gel method, and structural, morphology and magnetic characteristics were investigated. X-ray diffraction analysis showed that the synthesized sample was in a single phase with a spinel-ferrite-like structure (space group Fd-3m). The scanning electron microscopy displayed homogenous spherical grains with an agglomeration of the particles. The chemical composition determined by energy-dispersive spectroscopy shows the absence of any impurities. To understand the role of magnetic interaction in MnFe2O4 spinel ferrites, the structural and magnetic properties of MnFe2O4 have been explored theoretically. Based on the first-principles methods via density functional theory and Monte Carlo simulations, the magnetic hysteresis cycle has been plotted. Using the generalized gradient and GGA-PBE approximation in the full-potential linearized augmented plane wave (FP-LAPW) method, the exchange coupling interactions between magnetic elements and local magnetic moment were evaluated. Furthermore, the theoretical magnetic properties of MnFe2O4 were found to match the experimental ones. They both revealed that MnFe2O4 is a soft ferromagnetic material. The theoretical curve of magnetization versus temperature indicates that the transition occurred at Tc = 580.0 K. This was also in good agreement with the experimental Curie temperature

    Experimental and Theoretical Investigation of the Synthesis, Electronic and Magnetic Properties of MnFe<sub>2</sub>O<sub>4</sub> Spinel Ferrite

    No full text
    MnFe2O4 ferrite nanoparticle was synthesized via the sol–gel method, and structural, morphology and magnetic characteristics were investigated. X-ray diffraction analysis showed that the synthesized sample was in a single phase with a spinel-ferrite-like structure (space group Fd-3m). The scanning electron microscopy displayed homogenous spherical grains with an agglomeration of the particles. The chemical composition determined by energy-dispersive spectroscopy shows the absence of any impurities. To understand the role of magnetic interaction in MnFe2O4 spinel ferrites, the structural and magnetic properties of MnFe2O4 have been explored theoretically. Based on the first-principles methods via density functional theory and Monte Carlo simulations, the magnetic hysteresis cycle has been plotted. Using the generalized gradient and GGA-PBE approximation in the full-potential linearized augmented plane wave (FP-LAPW) method, the exchange coupling interactions between magnetic elements and local magnetic moment were evaluated. Furthermore, the theoretical magnetic properties of MnFe2O4 were found to match the experimental ones. They both revealed that MnFe2O4 is a soft ferromagnetic material. The theoretical curve of magnetization versus temperature indicates that the transition occurred at Tc = 580.0 K. This was also in good agreement with the experimental Curie temperature

    Efficient production of few-layer black phosphorus by liquid-phase exfoliation

    Full text link
    Phosphorene is a new two-dimensional material that has recently attracted much attention owing to its fascinating electrical, optical, thermal and chemical properties. Here, we report on high-quality exfoliation of black phosphorus nanosheets, with controllable size produced in large quantities by liquid-phase exfoliation using N-methyl-2-pyrrolidone (NMP) as a solvent under ambient conditions. The as-synthesized few layers show a great potential for solar energy conversion based on the optical results shown in this work
    corecore