4 research outputs found

    Use of Cyclodextrins in Anticancer Photodynamic Therapy Treatment

    No full text
    Photodynamic therapy (PDT) is mainly used to destroy cancerous cells; it combines the action of three components: a photoactivatable molecule or photosensitizer (PS), the light of an appropriate wavelength, and naturally occurring molecular oxygen. After light excitation of the PS, the excited PS then reacts with molecular oxygen to produce reactive oxygen species (ROS), leading to cellular damage. One of the drawbacks of PSs is their lack of solubility in water and body tissue fluids, thereby causing low bioavailability, drug-delivery efficiency, therapeutic efficacy, and ROS production. To improve the water-solubility and/or drug delivery of PSs, using cyclodextrins (CDs) is an interesting strategy. This review describes the in vitro or/and in vivo use of natural and derived CDs to improve antitumoral PDT efficiency in aqueous media. To achieve these goals, three types of binding modes of PSs with CDs are developed: non-covalent CD–PS inclusion complexes, covalent CD–PS conjugates, and CD–PS nanoassemblies. This review is divided into three parts: (1) non-covalent CD-PS inclusion complexes, covalent CD–PS conjugates, and CD–PS nanoassemblies, (2) incorporating CD–PS systems into hybrid nanoparticles (NPs) using up-converting or other types of NPs, and (3) CDs with fullerenes as PSs

    Inclusion complex vs. conjugation of hydrophobic photosensitizers with β-cyclodextrin: Improved disaggregation and photodynamic therapy efficacy against glioblastoma cells

    No full text
    International audienceSelf-aggregation of hydrophobic porphyrin-based photosensitizers (PSs) in aqueous biological environment decreases their bioavailability and in vivo therapeutic efficacy, which hampers their clinical use in photodynamic therapy (PDT). In the current study, we explore three new supramolecular systems based of hydrophobic PSs (i.e. 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin (mTHPP) or 5-(4-carboxyphenyl)-10,15,20-triphenylporphyrin (P1COOH)) non-covalently or covalently attached to β-CD. The two non-covalent solid inclusion complexes (β-CD)2/mTHPP and [(β-CD)/P1COOH]4 are prepared by a new co-precipitation@lyophilization combined method and the covalent conjugate β-CD-P1 by click chemistry. The binding type effect and effectiveness on the disaggregation in aqueous medium and in vitro PDT efficacy against glioblastoma cancer cells of PSs are investigated for the three β-CD/PS systems. The findings reveal a remarkable improvement of the disaggregation and in vitro PDT activity of these β-CD/PS systems compared to the free PSs, except for [(β-CD)/P1COOH]4 inclusion complex caused by J-type self-aggregation of the inclusion complex in tetrameric form. β-CD-P1 conjugate shows the higher in vitro PDT efficacy compared to the other β-CD/PS systems. Overall, the results indicate that the disaggregation in aqueous medium and in vitro PDT activity of hydrophobic PSs can be improved by their binding to β-CD and the covalent binding is the best approach

    Fighting hypoxia to improve PDT

    No full text
    Article de 115 pagesInternational audiencePhotodynamic therapy (PDT) has drawn great interest in recent years mainly due to its low side effects and few drug resistances. Nevertheless, one of the issues of PDT is the need for oxygen to induce a photodynamic effect. Tumours often have low oxygen concentrations, related to the abnormal structure of the microvessels leading to an ineffective blood distribution. Moreover, PDT consumes O2. In order to improve the oxygenation of tumour or decrease hypoxia, different strategies are developed and are described in this review: (1) The use of O2 vehicle; (2) the modification of the tumour microenvironment (TME); (3) combining other therapies with PDT; (4) hypoxia-independent PDT; (5) hypoxia-dependent PDT and (6) fractional PDT
    corecore