5 research outputs found
Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects
Porous titanium scaffolds have good mechanical properties that make them an interesting bone substitute material for large bone defects. These scaffolds can be produced with selective laser melting, which has the advantage of tailoring the structure's architecture. Reducing the strut size reduces the stiffness of the structure and may have a positive effect on bone formation. Two scaffolds with struts of 120-μm (titanium-120) or 230-μm (titanium-230) were studied in a load-bearing critical femoral bone defect in rats. The defect was stabilized with an internal plate and treated with titanium-120, titanium-230, or left empty. In vivo micro-CT scans at 4, 8, and 12 weeks showed more bone in the defects treated with scaffolds. Finally, 18.4 ± 7.1 mm3(titanium-120, p = 0.015) and 18.7 ± 8.0 mm3(titanium-230, p = 0.012) of bone was formed in those defects, significantly more than in the empty defects (5.8 ± 5.1 mm3). Bending tests on the excised femurs after 12 weeks showed that the fusion strength reached 62% (titanium-120) and 45% (titanium-230) of the intact contralateral femurs, but there was no significant difference between the two scaffolds. This study showed that in addition to adequate mechanical support, porous titanium scaffolds facilitate bone formation, which results in high mechanical integrity of the treated large bone defects. Copyrigh
Repeatability of digital image correlation for measurement of surface strains in composite long bones
Digital image correlation (DIC) can measure full-field surface strains during mechanical testing of hard and soft tissues. When compared to traditional methods, such as strain gauges, DIC offers larger validation data (similar to 50,000 points) for, e.g., finite element models. Our main aim was to evaluate the repeatability of surface strain measurements with DIC during compressive testing of composite femurs mimicking human bones. We also studied the similarity of the composite femur samples using CT. Composite femurs were chosen as test material to minimize the uncertainties associated with the use of cadaveric tissues and to understand the variability of the DIC measurement itself. Six medium-sized fourth generation composite human proximal femora (Sawbones) were CT imaged and mechanically tested in stance configuration. The force-displacement curves were recorded and the 3D surface strains were measured with DIC on the anterior surface of the femurs. Five femurs fractured at the neck-trochanter junction and one at the site below the minor trochanter. CT image of this bone showed an air cavity at the initial fracture site. All femurs fractured through a sudden brittle crack. The fracture force for the composite bones was 5751 +/- 650 N (mean +/- SD). The maximum von Mises strain during the fractures was 2.4 +/- 0.8%. Noise in one experiment was 5-30 mu epsilon. When applied loads were equalized the variation in strains between the bones was 20-25%, and when the maximum strains were equalized, variation in the other regions was 5-10%. DIC showed that the ability of nominally identical composite bones to bear high strains and loads before fracturing may vary between the samples. (C) 2013 Elsevier Ltd. All rights reserved
Experimental Validation Of Finite Element Model For Proximal Composite Femur Using Optical Measurements
Patient-specific finite element models have been used to predict femur strength and fracture risk in individuals. Validation of the adopted finite element modelling procedure against mechanical testing data is a crucial step when aiming for clinical applications. The majority of the works available in literature used data from strain gages to validate the model, thus having up to 15 experimental measurements. Optical techniques, such as Digital Image Correlation, can help to improve the models by providing a continuous field of deformation data over a femoral surface. The main objective of this study was to validate finite element models of six composite femora against strain data from digital image correlation, obtained during fracture tests performed in quasi-axial loading configuration. The finite element models were obtained from CT scans, by means of a semi-automatic segmentation. The principal strains both during the elastic phase and close to the fracture were compared, and showed a correlation coefficient close to 0.9. In the linear region, the slope and intercept were close to zero and unity, while for the case when fracture load was simulated, the slope decreased somewhat. The accuracy of the obtained results is comparable with the state-of-the-art literature, with the significant improvement of having around 50000 data points for each femur. This large number of measurements allows a more comprehensive validation of the predictions by the finite element models, since thousand of points are tracked along the femoral neck and trochanter region, i.e., the sites that are most critical for femur fracture. Moreover, strain measurement biases due to the strain gage reinforcement effect, were avoided. The combined experimental-numerical approach proved to be ready for application to in-vitro tests of human cadaver femurs, thus helping to develop a suitable mechanistic fracture risk criterion
Full-field Strain Measurement During Mechanical Testing of the Human Femur at Physiologically Relevant Strain Rates
Understanding the mechanical properties of human femora is of great importance for the development of a reliable fracture criterion aimed at assessing fracture risk. Earlier ex vivo studies have been conducted by measuring strains on a limited set of locations using strain gauges. Digital Image Correlation (DIC) could instead be used to reconstruct the full-field strain pattern over the surface of the femur. The objective of this study was to measure the full-field strain response of cadaver femora tested at a physiological strain rate up to fracture in a configuration resembling single stance. The three cadaver femora were cleaned from soft tissues, and a white background paint was applied with a random black speckle pattern over the anterior surface. The mechanical tests were conducted up to fracture at a constant displacement rate of 15 mm/s, and two cameras recorded the event at 3000 frames per second. DIC was performed to retrieve the full-field displacement map, from which strains were derived. A low-pass filter was applied over the measured displacements before the crack opened in order to reduce the noise level. The noise levels were assessed using a dedicated control plate. Conversely, no filtering was applied at the frames close to fracture to get the maximum resolution. The specimens showed a linear behavior of the principal strains with respect to the applied force up to fracture. The strain rate was comparable to the values available in literature from in-vivo measurements during daily activities. The cracks opened and fully propagated in less than 1 ms, and small regions with high values of the major principal strains could be spotted just a few frames before the crack opened. This corroborates the hypothesis of a strain-driven fracture mechanism in human bone. The data represents a comprehensive collection of full-field strains, both at physiological load levels and up to fracture. About 10000 measurements were collected for each bone, providing superior spatial resolution compared to ~15 measurements typically collected using strain gauges. These experimental data collection can be further used for validation of numerical models, and for experimental verification of bone constitutive laws and fracture criteria