13,741 research outputs found

    P-Wave Holographic Insulator/Superconductor Phase Transition

    Full text link
    Using a five dimensional AdS soliton in an Einstein-Yang-Mills theory with SU(2) gauge group we study p-wave holographic insulator/superconductor phase transition. To explore the phase structure of the model we consider the system in the probe limit as well as fully back reacted solutions. We will also study zero temperature limit of the p-wave holographic superconductor in four dimensions.Comment: Latex,18 pages,7 figures, v2: Typos correction, v3: minor changes added, and clarifications mad

    A mechanical behavior law for the numerical simulation of the mushy zone in welding

    Get PDF
    The aim of this work is to propose a mechanical behavior law dedicated to the mushy zone located between the solid phase and the weld pool in welding. The objective is to take into account of the influence of the mushy zone in the simulation of welding in order to improve the computation of induced effects such as residual stresses

    Continuous Monitoring of Rabi Oscillations in a Josephson Flux Qubit

    Full text link
    Under resonant irradiation, a quantum system can undergo coherent (Rabi) oscillations in time. We report evidence for such oscillations in a _continuously_ observed three-Josephson-junction flux qubit, coupled to a high-quality tank circuit tuned to the Rabi frequency. In addition to simplicity, this method of_Rabi spectroscopy_ enabled a long coherence time of about 2.5 microseconds, corresponding to an effective qubit quality factor \~7000.Comment: REVTeX4, 4pp., 4 EPS figure files. v3: changed title, fixed typos; final, to appear in PR

    Fermions in non-relativistic AdS/CFT correspondence

    Full text link
    We extend the non-relativistic AdS/CFT correspondence to the fermionic fields. In particular we study the two point function of a fermionic operator in non-relativistic CFTs by making use of a massive fermion propagating in geometries with Schrodinger group isometry. Although the boundary of the geometries with Schrodinger group isometry differ from that in AdS geometries where the dictionary of AdS/CFT is established, using the general procedure of AdS/CFT correspondence, we see that the resultant two point function has the expected form for fermionic operators in non-relativistic CFTs, though a non-trivial regularization may be needed.Comment: 12 pages,Latex file; V2: typos corrected, refs adde

    Quantum Field Theory of Forward Rates with Stochastic Volatility

    Full text link
    In a recent formulation of a quantum field theory of forward rates, the volatility of the forward rates was taken to be deterministic. The field theory of the forward rates is generalized to the case of stochastic volatility. Two cases are analyzed, firstly when volatility is taken to be a function of the forward rates, and secondly when volatility is taken to be an independent quantum field. Since volatiltiy is a positive valued quantum field, the full theory turns out to be an interacting nonlinear quantum field theory in two dimensions. The state space and Hamiltonian for the interacting theory are obtained, and shown to have a nontrivial structure due to the manifold moving with a constant velocity. The no arbitrage condition is reformulated in terms of the Hamiltonian of the system, and then exactly solved for the nonlinear interacting case.Comment: 7 Figure

    Non-Equilibrium Quasiclassical Theory for Josephson Structures

    Full text link
    We present a non-equilibrium quasiclassical formalism suitable for studying linear response ac properties of Josephson junctions. The non-equilibrium self-consistency equations are satisfied, to very good accuracy, already in zeroth iteration. We use the formalism to study ac Josephson effect in a ballistic superconducting point contact. The real and imaginary parts of the ac linear conductance are calculated both analytically (at low frequencies) and numerically (at arbitrary frequency). They show strong temperature, frequency, and phase dependence. Many anomalous properties appear near phi = pi. We ascribe them to the presence of zero energy bound states.Comment: 11 pages, 9 figures, Final version to appear in PR
    corecore