87 research outputs found

    Impact of inverter-based resources on transmission line relaying -part II: power swing protection

    Get PDF
    The power swing characteristic of transmission lines (TLs) can be affected by the large-scale integration of inverter-based resources (IBRs), resulting in the maloperation of the legacy power swing blocking (PSB) and out-of-step tripping (OST) functions. This paper presents a brief review of power swing phenomena and the impact on power swing protection functions. In this regard, the impact of IBR integration of type-III, and type-IV wind turbine generation (WTG) on legacy power swing protection functions has been scrutinized. To do so, the performance of impedance-based PSB and OST functions during the IBR integration has been investigated via comprehensive simulation studies. The results show that under a system contingency and high IBR penetration, depending on the IBR technology, the system experiences frequency oscillations and swinging impedance trajectories which are different from those from synchronous generators, such that the reliable operation of the legacy PSB and OST functions can be jeopardized. Moreover, during power swing phenomena, the simulation results have found that the security of distance protection cannot be guaranteed and the fault ride-through requirements cannot be maintained when a high share of IBRs have been integrated

    A Novel Passive Islanding Detection Scheme for Distributed Generations Based on Rate of Change of Positive Sequence Component of Voltage and Current

    Get PDF
    Islanding operation is one of serious hazards of distributed generation (DG) applications. According to IEEE 1547 standard, its occurrence must be detected within two seconds. This paper presents a novel passive islanding detection method based on rate of change of positive sequence component of voltage (RCPSV) and rate of change of positive sequence component of current (RCPSC) acquired at point of common coupling (PCC) of the targeted DG. Whenever the RCPSC and RCPSV are not equal to zero, their change of magnitudes is continuously compared to predetermined threshold values. If both values of RCPSC and RCPSV exceed the predetermined threshold values, it is concluded that the islanding condition has occurred. Otherwise, it is considered as a non-islanding event. The performance of the proposed method is investigated on a sample network in the presence of doubly fed induction generator (DFIG) based wind turbine and synchronous diesel generator DGs by MATLAB/Simulink software. Different non-islanding case studies are taken into account to evaluate the effectiveness of the proposed approach. The simulation results show that the proposed method has advantage of detecting the islanding rapidly and accurately even with zero non-detection zone (NDZ)

    Optimum resistive type fault current limiter: An efficient solution to achieve maximum fault ride-through capability of fixed-speed wind turbines during symmetrical and asymmetrical grid faults

    Get PDF
    This paper proposes an optimum resistive type fault current limiter (OR-FCL) as an efficient solution to achieve maximum fault ride-through (FRT) capability of fixed-speed wind turbines (FSWT) during various grid faults. In this paper, a dedicated control circuit is designed for the OR-FCL that enables it to insert an optimum value of resistance in the FSWT\u27s fault current\u27s path for improving transient behavior of the FSWT. The optimum resistance value depends on fault location and prefault active power. The control circuit of the proposed OR-FCL is capable of calculating the optimum resistance value for all the prefault conditions. By using the proposed control circuit, the FSWT can achieve its maximum FRT capability during symmetrical and asymmetrical faults, even at zero grid voltage. Analysis is provided in detail to highlight the process of calculating the optimum resistance of the OR-FCL. Moreover, the effect of the resistance value of the OR-FCL on the FRT behavior of FSWT is investigated. To show the efficiency of the proposed OR-FCL, its performance during various operation conditions of the FSWT is studied. It can be proved that each operation condition needs its own optimum resistance value, which can be obtained by using the proposed control circuit during the fault to achieve the maximum FRT capability of the FSWT. Comprehensive sets of simulations are carried out in PSCAD/EMTDC software and the results prove the effectiveness of the proposed approach

    Non-controlled fault current limiter to improve fault ride through capability of DFIG-based wind turbine

    Get PDF
    In this paper, a non-controlled fault current limiter (FCL) is proposed to improve fault ride through capability of doubly fed induction generator (DFIG)-based wind turbine. Cooperative operation of chopper circuit and the non-controlled FCL, which is located in rotor side of the DFIG, is studied. It is demonstrated that locating the proposed topology in the rotor side is effective from leakage coefficient point of view in limiting transient over currents rather than stator side. Furthermore, it is shown that, by obtaining optimum non-superconducting reactor value, rate of fault current change is limited to lower than maximum rate of current change in semiconductor switches of the DFIG’s converters during fault. Design methodology of non-superconducting reactor value is investigated. Operation of the non-controlled FCL in the rotor side is compared to crowbar protection scheme and results will be discussed. PSCAD/EMTDC software is employed to simulate the proposed scheme and prove its effectiveness

    Extracellular-Vesicle-Based Therapeutics in Neuro-Ophthalmic Disorders

    Get PDF
    Extracellular vesicles (EVs) have been recognized as promising candidates for developing novel therapeutics for a wide range of pathologies, including ocular disorders, due to their ability to deliver a diverse array of bioactive molecules, including proteins, lipids, and nucleic acids, to recipient cells. Recent studies have shown that EVs derived from various cell types, including mesenchymal stromal cells (MSCs), retinal pigment epithelium cells, and endothelial cells, have therapeutic potential in ocular disorders, such as corneal injury and diabetic retinopathy. EVs exert their effects through various mechanisms, including promoting cell survival, reducing inflammation, and inducing tissue regeneration. Furthermore, EVs have shown promise in promoting nerve regeneration in ocular diseases. In particular, EVs derived from MSCs have been demonstrated to promote axonal regeneration and functional recovery in various animal models of optic nerve injury and glaucoma. EVs contain various neurotrophic factors and cytokines that can enhance neuronal survival and regeneration, promote angiogenesis, and modulate inflammation in the retina and optic nerve. Additionally, in experimental models, the application of EVs as a delivery platform for therapeutic molecules has revealed great promise in the treatment of ocular disorders. However, the clinical translation of EV-based therapies faces several challenges, and further preclinical and clinical studies are needed to fully explore the therapeutic potential of EVs in ocular disorders and to address the challenges for their successful clinical translation. In this review, we will provide an overview of different types of EVs and their cargo, as well as the techniques used for their isolation and characterization. We will then review the preclinical and clinical studies that have explored the role of EVs in the treatment of ocular disorders, highlighting their therapeutic potential and the challenges that need to be addressed for their clinical translation. Finally, we will discuss the future directions of EV-based therapeutics in ocular disorders. Overall, this review aims to provide a comprehensive overview of the current state of the art of EV-based therapeutics in ophthalmic disorders, with a focus on their potential for nerve regeneration in ocular diseases
    • …
    corecore