69 research outputs found

    SON-POWERED DYNAMIC OPTIMIZATION OF RELAY LAYER TO ENHANCE COVERAGE AND CAPACITY OF A CELLULAR NETWORK COMBINED WITH CENTRALIZED SON ON MACRO LAYER

    Get PDF
    The usage patterns of cellular networks can change dramatically over short periods of time, such as when a large number of people crowd a very small space within a cell\u27s coverage area for only a short period of time. In order to save on costly and inefficient current solutions, the techniques presented herein suggest a Self-Organizing Network (SON)-optimized system of relays as a layer on top of an existing system. Such relays can be deployed ad hoc, such as in the cars of people arriving at a troubled location, to alleviate temporary coverage and load issues. SON will control the activation and deactivation of these ad hoc relays and the joint optimization of both the macro and relay layers

    Precursors prior to Type IIn supernova explosions are common: precursor rates, properties, and correlations

    Get PDF
    There is a growing number of supernovae (SNe), mainly of Type IIn, which present an outburst prior to their presumably final explosion. These precursors may affect the SN display, and are likely related to some poorly charted phenomena in the final stages of stellar evolution. Here we present a sample of 16 SNe IIn for which we have Palomar Transient Factory (PTF) observations obtained prior to the SN explosion. By coadding these images taken prior to the explosion in time bins, we search for precursor events. We find five Type IIn SNe that likely have at least one possible precursor event, three of which are reported here for the first time. For each SN we calculate the control time. Based on this analysis we find that precursor events among SNe IIn are common: at the one-sided 99% confidence level, more than 50% of SNe IIn have at least one pre-explosion outburst that is brighter than absolute magnitude -14, taking place up to 1/3 yr prior to the SN explosion. The average rate of such precursor events during the year prior to the SN explosion is likely larger than one per year, and fainter precursors are possibly even more common. We also find possible correlations between the integrated luminosity of the precursor, and the SN total radiated energy, peak luminosity, and rise time. These correlations are expected if the precursors are mass-ejection events, and the early-time light curve of these SNe is powered by interaction of the SN shock and ejecta with optically thick circumstellar material.Comment: 15 pages, 20 figures, submitted to Ap

    Interaction-powered supernovae: Rise-time vs. peak-luminosity correlation and the shock-breakout velocity

    Get PDF
    Interaction of supernova (SN) ejecta with the optically thick circumstellar medium (CSM) of a progenitor star can result in a bright, long-lived shock breakout event. Candidates for such SNe include Type IIn and superluminous SNe. If some of these SNe are powered by interaction, then there should be a relation between their peak luminosity, bolometric light-curve rise time, and shock-breakout velocity. Given that the shock velocity during shock breakout is not measured, we expect a correlation, with a significant spread, between the rise time and the peak luminosity of these SNe. Here, we present a sample of 15 SNe IIn for which we have good constraints on their rise time and peak luminosity from observations obtained using the Palomar Transient Factory. We report on a possible correlation between the R-band rise time and peak luminosity of these SNe, with a false-alarm probability of 3%. Assuming that these SNe are powered by interaction, combining these observables and theory allows us to deduce lower limits on the shock-breakout velocity. The lower limits on the shock velocity we find are consistent with what is expected for SNe (i.e., ~10^4 km/s). This supports the suggestion that the early-time light curves of SNe IIn are caused by shock breakout in a dense CSM. We note that such a correlation can arise from other physical mechanisms. Performing such a test on other classes of SNe (e.g., superluminous SNe) can be used to rule out the interaction model for a class of events.Comment: Accepted to ApJ, 6 page

    Age-related biological differences in children's and adolescents' very rare tumors

    Get PDF
    Very rare tumors (VRTs) in pediatric age represent many different diseases. They present an annual incidence < 2/1000,000 and correspond to about 11% of all cancers in patients aged 0–14 years. They can be roughly divided into two groups: one including tumors that are also rare in adults, and the other group includes adult-type tumors rarely encountered in children and adolescents. Although there is an obvious gap in knowledge regarding oncogenesis in pediatric cancers, there is some evidence of the involvement of various signalling pathways in the development of tumors in children and adolescents and sometimes in young adults. In addition, despite the rarity of these neoplasms, several attempts have been made to disclose the underlying mechanisms. More effort and resources have urgently to be devoted to deepening current knowledge and integrating new findings into the therapeutic approach, which nowadays relies on the treatment modalities used in adult oncology. The aim of this paper is to provide a review of the main solid VRTs occurring in both the pediatric and the adult age groups, highlighting the variability between groups in their biological and clinical course

    The role of cancer predisposition syndrome in children and adolescents with very rare tumours

    Get PDF
    Germline predisposing pathogenic variants (GPVs) are present in approximately 8 to 10% of children with all cancer types. Very rare tumours (VRTs) represent many different diseases, defined with an annual incidence < 2 / 1,000,000, and correspond to 11% of all cancers in patients aged 0-14 years. Some of these VRTs, including cancer typical for adults, develop in children with a cancer predisposition syndrome (CPS). Classically, three situations lead to consider this association: Some patients develop a VRT for which histology itself strongly suggests a GPV related to a CPS; others are referred for germline genetic testing because of a family or personal history and finally, a systematic molecular genomic tumour analysis, reveals a PV typical to a CPS. Depending on the samples tested and type of analysis performed, information can be directly available about the germline status of such a PV. Depicting the association between CPS and VRT is clinically important as some of these tumour types require adapted therapy, sometimes in the frontline setting, and the proposal of a specific surveillance programme to detect other malignancies. The diagnosis of CPS necessitates a careful familial evaluation and genetic counselling regarding the risks faced by the child or other family members. The aim of this paper is to propose a literature review of solid VRTs occurring in paediatric and young adult patients associated with CPSs

    Characterization and genotype-phenotype correlation of patients with Fanconi anemia in a multi-ethnic population

    Get PDF
    Fanconi anemia (FA), an inherited bone marrow failure (BMF) syndrome, caused by mutations in DNA repair genes, is characterized by congenital anomalies, aplastic anemia, high risk of malignancies and extreme sensitivity to alkylating agents. We aimed to study the clinical presentation, molecular diagnosis and genotype-phenotype correlation among patients with FA from the Israeli inherited BMF registry. Overall, 111 patients of Arab (57%) and Jewish (43%) descent were followed for a median of 15 years (range: 0.1-49); 63% were offspring of consanguineous parents. One-hundred patients (90%) had at least one congenital anomaly; over 80% of the patients developed bone marrow failure; 53% underwent hematopoietic stem-cell transplantation; 33% of the patients developed cancer; no significant association was found between hematopoietic stem-cell transplant and solid tumor development. Nearly 95% of the patients tested had confirmed mutations in the Fanconi genes FANCA (67%), FANCC (13%), FANCG (14%), FANCJ (3%) and FANCD1 (2%), including twenty novel mutations. Patients with FANCA mutations developed cancer at a significantly older age compared to patients with mutations in other Fanconi genes (mean 18.5 and 5.2 years, respectively, P=0.001); however, the overall survival did not depend on the causative gene. We hereby describe a large national cohort of patients with FA, the vast majority genetically diagnosed. Our results suggest an older age for cancer development in patients with FANCA mutations and no increased incidence of solid tumors following hematopoietic stem-cell transplant. Further studies are needed to guide individual treatment and follow-up programs

    A Wolf-Rayet-Like Progenitor of SN 2013cu from Spectral Observations of a Stellar Wind

    Get PDF
    The explosive fate of massive Wolf-Rayet stars (WRSs) is a key open question in stellar physics. An appealing option is that hydrogen- deficient WRSs are the progenitors of some hydrogen-poor supernova explosions of types IIb, Ib and Ic. A blue object, having luminosity and colours consistent with those of some WRSs, has recently been identified in pre-explosion images at the location of a supernova of type Ib, but has not yet been conclusively determined to have been the progenitor. Similar work has so far only resulted in non-detections. Comparison of early photometric observations of type Ic supernovae with theoretical models suggests that the progenitor stars had radii of less than 10(exp 12) centimetres, as expected for some WRSs. The signature of WRSs, their emission line spectra, cannot be probed by such studies. Here we report the detection of strong emission lines in a spectrum of type IIb supernova 2013cu (iPTF13ast) obtained approximately 15.5 hours after explosion (by 'flash spectroscopy', which captures the effects of the supernova explosion shock breakout flash on material surrounding the progenitor star).We identify Wolf-Rayet-like wind signatures, suggesting a progenitor of the WN(h) subclass (those WRSs with winds dominated by helium and nitrogen, with traces of hydrogen). The extent of this dense wind may indicate increased mass loss from the progenitor shortly before its explosion, consistent with recent theoretical predictions

    The role of cancer predisposition syndrome in children and adolescents with very rare tumours

    Get PDF
    Germline predisposing pathogenic variants (GPVs) are present in approximately 8–10 % of children with all cancer types. Very rare tumours (VRTs) represent many different diseases, defined with an annual incidence < 2 / 1,000,000, and correspond to 11 % of all cancers in patients aged 0–14 years. Some of these VRTs, including cancer typical for adults, develop in children with a cancer predisposition syndrome (CPS). Classically, three situations lead to consider this association: Some patients develop a VRT for which histology itself strongly suggests a GPV related to a CPS; others are referred for germline genetic testing because of a family or personal history and finally, a systematic molecular genomic tumour analysis, reveals a PV typical to a CPS. Depending on the samples tested and type of analysis performed, information can be directly available about the germline status of such a PV. Depicting the association between CPS and VRT is clinically important as some of these tumour types require adapted therapy, sometimes in the frontline setting, and the proposal of a specific surveillance programme to detect other malignancies. The diagnosis of CPS necessitates a careful familial evaluation and genetic counselling regarding the risks faced by the child or other family members. The aim of this paper is to propose a literature review of solid VRTs occurring in paediatric and young adult patients associated with CPSs

    Interaction-powered Supernovae: Rise-time versus Peak-luminosity Correlation and the Shock-breakout Velocity

    Get PDF
    Interaction of supernova (SN) ejecta with the optically thick circumstellar medium (CSM) of a progenitor star can result in a bright, long-lived shock-breakout event. Candidates for such SNe include Type IIn and superluminous SNe. If some of these SNe are powered by interaction, then there should be a specific relation between their peak luminosity, bolometric light-curve rise time, and shock-breakout velocity. Given that the shock velocity during shock breakout is not measured, we expect a correlation, with a significant spread, between the rise time and the peak luminosity of these SNe. Here, we present a sample of 15 SNe IIn for which we have good constraints on their rise time and peak luminosity from observations obtained using the Palomar Transient Factory. We report on a possible correlation between the R-band rise time and peak luminosity of these SNe, with a false-alarm probability of 3%. Assuming that these SNe are powered by interaction, combining these observables and theory allows us to deduce lower limits on the shock-breakout velocity. The lower limits on the shock velocity we find are consistent with what is expected for SNe (i.e., ~10^(4) km s^(–1)). This supports the suggestion that the early-time light curves of SNe IIn are caused by shock breakout in a dense CSM. We note that such a correlation can arise from other physical mechanisms. Performing such a test on other classes of SNe (e.g., superluminous SNe) can be used to rule out the interaction model for a class of events
    • …
    corecore