14 research outputs found

    Omecamtiv mecarbil in precision-cut living heart failure slices: A story of a double-edged sword

    Get PDF
    Heart failure (HF) is a rapidly growing pandemic while medical treatment options remain limited. Omecamtiv mecarbil (OM) is a novel HF drug that directly targets the myosin heads of the cardiac muscle. This study used living myocardial slices (LMS) from patients with HF to evaluate the direct biomechanical effects of OM as compared to dobutamine. LMS were produced from patients with end-stage HF undergoing cardiac transplantation or left ventricular assist device implantation and cultured under electromechanical stimulation (diastolic preload: ca. 1 mN, stimulation frequency: 0.5 Hz). Dobutamine and omecamtiv mecarbil (OM) were administered on consecutive days and biomechanical effects were continuously recorded with dedicated force transducers. OM and dobutamine significantly increased contractile force to a similar maximum force, but OM also increased median time-to-peak with 48 % (p = 0.046) and time-to-relaxation with 68 % (p = 0.045). OM administration led to impaired relaxation of HF LMS with increasing stimulation frequencies, which was not observed with dobutamine. Furthermore, the functional refractory period was significantly shorter after administration of OM compared to dobutamine (235 ms (200–265) vs. 270 ms (259–283), p = 0.035). In conclusion, OM increased contractile force and systolic duration of HF LMS, indicating an improvement in cardiac function and normalization of systolic time intervals in patients with HF. Conversely, OM slowed relaxation, which could lead to diastolic filling abnormalities. As such, OM showed benefits on systolic function on one hand but potential hindrances of diastolic function on the other hand

    Acute Biomechanical Effects of Empagliflozin on Living Isolated Human Heart Failure Myocardium

    Get PDF
    Purpose: Multiple randomized controlled trials have presented SGLT2 inhibitors (SGLT2i) as novel pharmacological therapy for patients with heart failure, resulting in reductions in hospitalization for heart failure and mortality. Given the absence of SGLT2 receptors in the heart, mechanisms of direct cardioprotective effects of SGLT2i are complex and remain to be investigated. In this study, we evaluated the direct biomechanical effects of SGLT2i empagliflozin on isolated myocardium from end-stage heart failure patients. Methods: Ventricular tissue biopsies obtained from 7 patients undergoing heart transplantation or ventricular assist device implantation surgery were cut into 27 living myocardial slices (LMS) and mounted in custom-made cultivation chambers with mechanical preload and electrical stimulation, resulting in cardiac contractions. These 300 µm thick LMS were subjected to 10 µM empagliflozin and with continuous recording of biomechanical parameters. Results: Empagliflozin did not affect the maximum contraction force of the slices, however, increased total contraction duration by 13% (p = 0.002) which was determined by prolonged time to peak and time to relaxation (p = 0.009 and p = 0.003, respectively). Conclusion: The addition of empagliflozin to LMS from end-stage heart failure patients cultured in a biomimetic system improves contraction and relaxation kinetics by increasing total contraction duration without diminishing maximum force production. Therefore, we present convincing evidence that SGLT2i can directly act on the myocardium in absence of systemic influences from other organ systems.</p

    Biomechanical response of ultrathin slices of hypertrophic cardiomyopathy tissue to myosin modulator mavacamten

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is the most common inherited myocardial disorder of the heart, but effective treatment options remain limited. Mavacamten, a direct myosin modulator, has been presented as novel pharmacological therapy for HCM. The aim of this study was to analyze the biomechanical response of HCM tissue to Mavacamten using living myocardial slices (LMS). LMS (n = 58) from patients with HCM (n = 10) were cultured under electromechanical stimulation, and Verapamil and Mavacamten were administered on consecutive days to evaluate their effects on cardiac biomechanics. Mavacamten and Verapamil reduced contractile force and dF/dt and increased time-to-relaxation in a similar manner. Yet, the time-to-peak of the cardiac contraction was prolonged after administration of Mavacamten (221.0 ms (208.8 – 236.3) vs. 237.7 (221.0 – 254.7), p = 0.004). In addition, Mavacamten prolonged the functional refractory period (FRP) (330 ms (304 − 351) vs. 355 ms (313 − 370), p = 0.023) and better preserved twitch force with increasing stimulation frequencies, compared to Verapamil. As such, Mavacamten reduced (hyper-)contractility and prolonged contraction duration of HCM LMS, suggesting a reduction in cardiac wall stress. Also, Mavacamten might protect against the development of ventricular tachyarrhythmias due to prolongation of the FRP, and improve toleration of tachycardia due to better preservation of twitch force at tachycardiac stimulation frequencies.</p

    Biatrial arrhythmogenic substrate in patients with hypertrophic obstructive cardiomyopathy

    Get PDF
    Background: Atrial fibrillation (AF) in patients with hypertrophic obstructive cardiomyopathy (HOCM) may be caused by a primary atrial myopathy. Whether HOCM-related atrial myopathy affects mainly electrophysiological properties of the left atrium (LA) or also the right atrium (RA) has never been investigated. Objective: The purpose of this study was to characterize atrial conduction and explore differences in the prevalence of conduction disorders, potential fractionation, and low-voltage areas (LVAs) between the RA and LA during sinus rhythm (SR) as indicators of potential arrhythmogenic areas. Methods: Intraoperative epicardial mapping of both atria during SR was performed in 15 HOCM patients (age 50 ± 12 years). Conduction delay (CD) and conductin block (CB), unipolar potential characteristics (voltages, fractionation), and LVA were quantified. Results: Conduction disorders and LVA were found scattered throughout both atria in all patients and did not differ between the RA and LA (CD: 2.9% [1.9%–3.6%] vs 2.6% [2.1%–6.4%], P = .541; CB: 1.7% [0.9%–3.1%] vs 1.5% [0.5%–2.8%], P = .600; LVA: 4.7% [1.6%–7.7%] vs 2.9% [2.1%–7.1%], P = .793). Compared to the RA, unipolar voltages of single potentials (SPs) and fractionated potentials (FPs) were higher in the LA (SP: P75 7.3 mV vs 10.9 mV; FP: P75 2.0 mV vs 3.7 mV). FP contained low-voltage components in only 18% of all LA sites compared to 36% of all RA sites. Conclusion: In patients with HOCM, conduction disorders, LVA, and FP are equally present in both atria, supporting the hypothesis of a primary atrial myopathy. Conceptually, the presence of a biatrial substrate and high-voltage FP may contribute to failure of ablative therapy of atrial tachyarrhythmias in this population

    Biatrial arrhythmogenic substrate in patients with hypertrophic obstructive cardiomyopathy

    Get PDF
    Background: Atrial fibrillation (AF) in patients with hypertrophic obstructive cardiomyopathy (HOCM) may be caused by a primary atrial myopathy. Whether HOCM-related atrial myopathy affects mainly electrophysiological properties of the left atrium (LA) or also the right atrium (RA) has never been investigated. Objective: The purpose of this study was to characterize atrial conduction and explore differences in the prevalence of conduction disorders, potential fractionation, and low-voltage areas (LVAs) between the RA and LA during sinus rhythm (SR) as indicators of potential arrhythmogenic areas. Methods: Intraoperative epicardial mapping of both atria during SR was performed in 15 HOCM patients (age 50 ± 12 years). Conduction delay (CD) and conductin block (CB), unipolar potential characteristics (voltages, fractionation), and LVA were quantified. Results: Conduction disorders and LVA were found scattered throughout both atria in all patients and did not differ between the RA and LA (CD: 2.9% [1.9%–3.6%] vs 2.6% [2.1%–6.4%], P = .541; CB: 1.7% [0.9%–3.1%] vs 1.5% [0.5%–2.8%], P = .600; LVA: 4.7% [1.6%–7.7%] vs 2.9% [2.1%–7.1%], P = .793). Compared to the RA, unipolar voltages of single potentials (SPs) and fractionated potentials (FPs) were higher in the LA (SP: P75 7.3 mV vs 10.9 mV; FP: P75 2.0 mV vs 3.7 mV). FP contained low-voltage components in only 18% of all LA sites compared to 36% of all RA sites. Conclusion: In patients with HOCM, conduction disorders, LVA, and FP are equally present in both atria, supporting the hypothesis of a primary atrial myopathy. Conceptually, the presence of a biatrial substrate and high-voltage FP may contribute to failure of ablative therapy of atrial tachyarrhythmias in this population

    Preclinical Models of Cardiac Disease:A Comprehensive Overview for Clinical Scientists

    Get PDF
    For recent decades, cardiac diseases have been the leading cause of death and morbidity worldwide. Despite significant achievements in their management, profound understanding of disease progression is limited. The lack of biologically relevant and robust preclinical disease models that truly grasp the molecular underpinnings of cardiac disease and its pathophysiology attributes to this stagnation, as well as the insufficiency of platforms that effectively explore novel therapeutic avenues. The area of fundamental and translational cardiac research has therefore gained wide interest of scientists in the clinical field, while the landscape has rapidly evolved towards an elaborate array of research modalities, characterized by diverse and distinctive traits. As a consequence, current literature lacks an intelligible and complete overview aimed at clinical scientists that focuses on selecting the optimal platform for translational research questions. In this review, we present an elaborate overview of current in vitro, ex vivo, in vivo and in silico platforms that model cardiac health and disease, delineating their main benefits and drawbacks, innovative prospects, and foremost fields of application in the scope of clinical research incentives.</p
    corecore