6 research outputs found

    Top Quark Mass Measurement in the tt-bar All Hadronic Channel using a Matrix Element Technique in ppbar Collisions at sqrt s = 1.96 TeV

    No full text
    submitted to Phys. Rev. DWe present a measurement of the top quark mass in the all-hadronic channel (\tt \to \bbq1q2ˉq3q4ˉq_{1}\bar{q_{2}}q_{3}\bar{q_{4}}) using 943 pb1^{-1} of \ppbar collisions at s=1.96\sqrt {s} = 1.96 TeV collected at the CDF II detector at Fermilab (CDF). We apply the standard model production and decay matrix-element (ME) to \ttbar candidate events. We calculate per-event probability densities according to the ME calculation and construct template models of signal and background. The scale of the jet energy is calibrated using additional templates formed with the invariant mass of pairs of jets. These templates form an overall likelihood function that depends on the top quark mass and on the jet energy scale (JES). We estimate both by maximizing this function. Given 72 observed events, we measure a top quark mass of 171.1 ±\pm 3.7 (stat.+JES) ±\pm 2.1 (syst.) GeV/c2c^{2}. The combined uncertainty on the top quark mass is 4.3 GeV/c2c^{2}

    Observation of exclusive charmonium production and gamma+gamma to mu+mu- in p+pbar collisions at sqrt{s} = 1.96 TeV

    No full text
    7 pages, 3 figures, 1 tableWe have observed the reactions p+pbar --> p+X+pbar, with X being a centrally produced J/psi, psi(2S) or chi_c0, and gamma+gamma --> mu+mu-, in proton- antiproton collisions at sqrt{s} = 1.96 TeV using the Run II Collider Detector at Fermilab. The event signature requires two oppositely charged muons, each with pseudorapidity |eta| mu+mu-. Events with a J/psi and an associated photon candidate are consistent with exclusive chi_c0 production through double pomeron exchange. The exclusive vector meson production is as expected for elastic photo- production, gamma+p --> J/psi(psi(2S)) + p, which is observed here for the first time in hadron-hadron collisions. The cross sections ds/dy(y=0) for p + pbar --> p + X + pbar with X = J/psi, psi(2S) orchi_c0 are 3.92+/-0.62 nb, 0.53+/-0.14 nb, and 75+/-14 nb respectively. The cross section for the continuum, with |eta(mu+/-)| < 0.6, M(mumu) in [3.0,4.0] GeV/c2, is [Integral ds/(dM.deta1.deta2)] = 2.7+/-0.5 pb, consistent with QED predictions. We put an upper limit on the cross section for odderon exchange in J/psi production: ds/dy(y=0) (J/psi_O/IP) < 2.3 nb at 95% C.L

    Measurement of the kTk_{T} Distribution of Particles in Jets Produced in p\barp Collisions at s=1.96\sqrt{s}=1.96 TeV

    No full text
    Submitted to PRLWe present a measurement of the transverse momentum with respect to the jet axis (kTk_{T}) of particles in jets produced in ppˉp\bar p collisions at s=1.96\sqrt{s}=1.96 TeV. Results are obtained for charged particles within a cone of opening angle 0.5 radians around the jet axis in events with dijet invariant masses between 66 and 737 GeV/c2^{2}. The experimental data are compared to theoretical predictions obtained for fragmentation partons within the framework of resummed perturbative QCD using the modified leading log and next-to-modified leading log approximations. The comparison shows that trends in data are successfully described by the theoretical predictions, indicating that the perturbative QCD stage of jet fragmentation is dominant in shaping basic jet characteristics

    First Measurement of the Ratio of Branching Fractions B(Lambda_b to Lambda_c mu nu)/B(Lambda_b to Lambda_c pi)

    No full text
    Submitted to Physical Review DThe analysis uses data from an integrated luminosity of approximately 172 pb-1 of ppbar collisions at sqrt(s)=1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. The Lambda_b and B0 relative branching fractions are measured to be: B(Lambda_b to Lambda_c+ mu nu)/B(Lambda_b to Lambda_c+ pi) = 16.6 +- 3.0 (stat) +- 1.0 (syst) +2.6 -3.4 (PDG) +- 0.3 (EBR), B(B0 to D+ mu nu)/B(B0 to D+ pi) = 9.9 +- 1.0 (stat) +- 0.6 (syst) +- 0.4 (PDG) +- 0.5 (EBR), B(B0 to D*+ mu nu)/B(B0 to D*+ pi) = 16.5 +- 2.3 (stat) +- 0.6 (syst) +- 0.5 (PDG) +- 0.8 (EBR) This article also presents measurements of the branching fractions of four new Lambda_b semileptonic decays: Lambda_b to Lambda_c(2595)+ mu nu, Lambda_b to Lambda_c(2625)+ mu nu, Lambda_b to Sigma_c(2455)0 pi mu nu, Lambda_b to Sigma_c(2455)++ pi mu nu, relative to the branching fraction of the Lambda_b to Lambda_c mu nu decay. Finally, the transverse-momentum distribution of Lambda_b baryons produced in p-pbar collisions is measured and found to be significantly different from that of B0 mesons

    Search for new particles decaying into dijets in proton-antiproton collisions at sqrt(s) = 1.96 TeV

    No full text
    10 pages, 4 figuresWe present a search for new particles whose decays produce two jets (dijets) using proton-antiproton collision data corresponding to an integrated luminosity of 1.13 fb-1 collected with the CDF II detector. The measured dijet mass spectrum is found to be consistent with next-to-leading-order perturbative QCD predictions, and no significant evidence of new particles is found. We set upper limits at the 95% confidence level on cross sections times the branching fraction for the production of new particles decaying into dijets with both jets having a rapidity magnitude |y| < 1. These limits are used to determine the mass exclusions for the excited quark, axigluon, flavor-universal coloron, E6 diquark, color-octet technirho, W', and Z'

    Measurement of Cross Sections for bb Jet Production in Events with a ZZ Boson in ppˉp\bar{p} Collisions at s=1.96\sqrt{s}=1.96 TeV

    No full text
    submitted to Phys. Rev. DA measurement of the \bjet production cross section is presented for events containing a ZZ boson produced in ppˉp\bar{p} collisions at s=1.96\sqrt{s}=1.96 TeV, using data corresponding to an integrated luminosity of 2 fb1^{-1} collected by the CDF II detector at the Tevatron. ZZ bosons are selected in the electron and muon decay modes. Jets are considered with transverse energy ET>20E_T>20 GeV and pseudorapidity η<1.5|\eta|<1.5 and are identified as \bjets using a secondary vertex algorithm. The ratio of the integrated Z+\bjet cross section to the inclusive ZZ production cross section is measured to be 3.32±0.53(stat.)±0.42(syst.)×1033.32 \pm 0.53 {\rm (stat.)} \pm 0.42 {\rm (syst.)}\times 10^{-3}. This ratio is also measured differentially in jet ETE_T, jet η\eta, ZZ-boson transverse momentum, number of jets, and number of \bjets. The predictions from leading order Monte Carlo generators and next-to-leading-order QCD calculations are found to be consistent with the measurements within experimental and theoretical uncertainties
    corecore