32 research outputs found

    Larvicidal efficacy of Catharanthus roseus Linn. (Family: Apocynaceae) leaf extract and bacterial insecticide Bacillus thuringiensis against Anopheles stephensi Liston.

    Get PDF
    AbstractObjectiveTo explore the larvicidal activity of Catharanthus roseus (C. roseus) leaf extract and Bacillus thuringiensis (B. thuringiensis) against the malarial vector Anopheles stephensi (An. stephensi), when being used alone or together.MethodsThe larvicidal activity was assayed at various concentrations under the laboratory and field conditions. The LC50 and LC90 values of the C. roseus leaf extract were determined by probit analysis.ResultsThe plant extract showed larvicidal effects after 24 h of exposure; however, the highest larval mortality was found in the petroleum ether extract of C. roseus against the first to fourth instars larvae with LC50=3.34, 4.48, 5.90 and 8.17 g/L, respectively; B. thuringiensis against the first to fourth instars larvae with LC50=1.72, 1.93, 2.17 and 2.42 g/L, respectively; and the combined treatment with LC50=2.18, 2.41, 2.76 and 3.22 g/L, respectively. No mortality was observed in the control.ConclusionsThe petroleum ether extract of C. roseus extract and B. thuringiensis have potential to be used as ideal eco–friendly agents for the control of An. stephensi in vector control programs. The combined treatment with this plant crude extract and bacterial toxin has better larvicidal efficacy against An. stephensi

    Bioefficacy of Morinda tinctoria and Pongamia glabra plant extracts against the malaria vector Anopheles stephensi (Diptera: Culicidae)

    No full text
    Mosquito-borne diseases have an economic impact, including loss in commercial and labour outputs, particularly in countries with tropical and subtropical climates; however, no part of the world is free from vector-borne diseases. The aim of the present study was to investigate the larvicidal, adulticidal and ovicidal activity of dried leaf chloroform, ethyl acetate, acetone, aqueous, and methanol extracts of <em>Morinda</em> <em>tinctoria</em> and <em>Pongamia</em> <em>glabra</em> against larvae of <em>Anopheles</em> <em>stephensi</em> (Diptera: Culicidae). Larvae were exposed to varying concentrations of plant extracts for 24 h. All extracts showed moderate larvicidal effects after 24 h of exposure; however, the highest larval mortality was found with the leaf methanol extracts of <em>M. tinctoria</em> and <em>P. glabra</em> against the larvae of <em>A. stephensi</em> lethal concentration (LC)<sub>50</sub>=136.24 and 141.05 ppm; LC<sub>90</sub>=342.67 and 368.89 ppm, respectively. The results of the adulticidal activity assays of chloroform, ethyl acetate, acetone, aqueous, and methanol extracts of <em>M. tinctoria</em> and <em>P. glabra</em> showed significant mortality against larvae of <em>A. stephensi</em>. The methanol extract showed maximum activity compared with the other extracts. The greatest effect on mean percentage hatch in the ovicidal assays was observed 48 h post-treatment. Percent hatch was inversely proportional to the concentration of extract, and directly proportional to the number of eggs. A mortality of 100% was observed with 100-400 ppm methanol extracts and 200-400 ppm aqueous extracts of <em>M. tinctoria</em>, and 200-400 ppm aqueous and methanol extracts of <em>P. glabra</em>. This study provides the first report of the larvicidal, adulticidal and ovicidal activities of <em>M. tinctoria</em> and <em>P. glabra</em> plant extracts against the malaria vector, A. stephensi, representing an ideal eco-friendly approach for its control

    Myco-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae)

    No full text
    Each year, mosquito-borne diseases infect nearly 700 million people, resulting more than one million deaths. In this study, we proposed a Metarhizium anisopliae-based method of green synthesis of silver nanoparticles to control the rural malaria vector Anopheles culicifacies. Silver nanoparticles were characterized by UV–Vis spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, and X-ray diffraction. In acute toxicity experiments, larvae (I–IV instar) and pupae of A. culicifacies were exposed to M. anisopliae-synthesized silver nanoparticles (15, 30, 45, 60, and 75 ppm). LC50 of silver nanoparticles was 32.8 ppm (I), 39.8 ppm (II), 45.9 ppm (III), 51.9 (IV), and 60.0 ppm (pupa). Lower dosages of myco-synthesized silver nanoparticles have detrimental effects on larval and pupal development of A. culicifacies. EI50 was 14.9 ppm. Overall, this research highlighted that myco-synthesized silver nanoparticles can be proposed as effective tools for eco-friendly control of the rural malaria vector A. culicifacies

    Mosquitocidal and antiplasmodial activity of Senna occidentalis (Cassiae) and Ocimum basilicum (Lamiaceae) from Maruthamalai hills against Anopheles stephensi and Plasmodium falciparum

    No full text
    Each year, mosquito-borne diseases infect nearly 700 million people, resulting to more than 1 million deaths. In this study, we evaluated the larvicidal, pupicidal, and smoke toxicity of Senna occidentalis and Ocimum basilicum leaf extracts against the malaria vector Anopheles stephensi. Furthermore, the antiplasmodial activity of plant extracts was evaluated against chloroquine (CQ)-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. In larvicidal and pupicidal experiments, S. occidentalis LC50 ranged from 31.05 (I instar larvae) to 75.15 ppm (pupae), and O. basilicum LC50 ranged from 29.69 (I instar larvae) to 69 ppm (pupae). Smoke toxicity experiments conducted against adults showed that S. occidentalis and O. basilicum coils evoked mortality rates comparable to the pyrethrin-based positive control (38, 52, and 42 %, respectively). In antiplasmodial assays, Senna occidentalis 50 % inhibitory concentration (IC50) were 48.80 μg/ml (CQ-s) and 54.28 μg/ml (CQ-r), while O. basilicum IC50 were 68.14 μg/ml (CQ-s) and 67.27 μg/ml (CQ-r). Overall, these botanicals could be considered as potential sources of metabolites to build newer and safer malaria control tools

    Biosynthesis, characterization, and acute toxicity of Berberis tinctoria-fabricated silver nanoparticles against the Asian tiger mosquito, Aedes albopictus, and the mosquito predators Toxorhynchites splendens and Mesocyclops thermocyclopoides

    No full text
    Aedes albopictus is an important arbovirus vector, including dengue. Currently, there is no specific treatment for dengue. Its prevention solely depends on effective vector control measures. In this study, silver nanoparticles (AgNPs) were biosynthesized using a cheap leaf extract of Berberis tinctoria as reducing and stabilizing agent and tested against Ae. albopictus and two mosquito natural enemies. AgNPs were characterized by using UV–vis spectrophotometry, X-ray diffraction, and scanning electron microscopy. In laboratory conditions, the toxicity of AgNPs was evaluated on larvae and pupae of Ae. albopictus. Suitability Index/Predator Safety Factor was assessed on Toxorhynchites splendens and Mesocyclops thermocyclopoides. The leaf extract of B. tinctoria was toxic against larval instars (I–IV) and pupae of Ae. albopictus; LC50 was 182.72 ppm (I instar), 230.99 ppm (II), 269.65 ppm (III), 321.75 ppm (IV), and 359.71 ppm (pupa). B. tinctoria-synthesized AgNPs were highly effective, with LC50 of 4.97 ppm (I instar), 5.97 ppm (II), 7.60 ppm (III), 9.65 ppm (IV), and 14.87 ppm (pupa). Both the leaf extract and AgNPs showed reduced toxicity against the mosquito natural enemies M. thermocyclopoides and T. splendens. Overall, this study firstly shed light on effectiveness of B. tinctoria-synthesized AgNPs as an eco-friendly nanopesticide, highlighting the concrete possibility to employ this newer and safer tool in arbovirus vector control programs
    corecore