7 research outputs found

    An Assessment of Biodiversity in Tabuk Region of Saudi Arabia: A Comprehensive Review

    No full text
    Biodiversity refers to all the type of species in one geographical region or ecosystem. It consists of plants, animals, bacteria, and other life forms. As an estimate, around 1.7 million species are on record globally and approximately 15,000–18,000 new species are added each year. Global climate change is accelerating species extinction due to habitat destruction. Further, various abiotic and biotic environmental factors are limiting the pattern of biodiversity in a geographical region. A change in species category from endangered to extinction occurs due to their physiological, morphological, and life history pattern, which limits them to a specific niche. Biodiversity is very important for energy production and flow, bioremediation, and biogeochemical cycling of nutrients in terrestrial to aquatic ecosystems and vice versa. It is further required for human existence in the form of food, fibers, medicines, and biological control. Therefore, consistent monitoring, assessment, and conservation of ecological habitats and diversity of flora and fauna of aquatic and terrestrial ecosystems is the need of the hour. In this article, we are presenting an assessment based upon the literature survey on the biodiversity of Tabuk region of Kingdom of Saudi Arabia. A comprehensive study on the biodiversity of plants, animals and microorganisms of the Tabuk region (Tabuk city, Tayma, Haql, Sharma, Duba, Al Wajh and Umluj, Al Zetah, Al Beda’a, etc.) are included in this review. This study will be a landmark as it is conducted at the inception of NEOM project in Tabuk region. It will help the authorities to enhance the native green cover, decrease desertification, regenerate biodiversity in natural environments, and advance the quality of life, to achieve the objectives of the Saudi Green Initiative and VISION 2030. However, studies and investigations on Tabuk biodiversity are still limited and need further exploration. Recently, a joint work between King Salman Royal Natural Reserve (KSRNR) and Department of Biology of University of Tabuk is underway to monitor the baseline data of flora and fauna of this region

    An Assessment of Biodiversity in Tabuk Region of Saudi Arabia: A Comprehensive Review

    No full text
    Biodiversity refers to all the type of species in one geographical region or ecosystem. It consists of plants, animals, bacteria, and other life forms. As an estimate, around 1.7 million species are on record globally and approximately 15,000–18,000 new species are added each year. Global climate change is accelerating species extinction due to habitat destruction. Further, various abiotic and biotic environmental factors are limiting the pattern of biodiversity in a geographical region. A change in species category from endangered to extinction occurs due to their physiological, morphological, and life history pattern, which limits them to a specific niche. Biodiversity is very important for energy production and flow, bioremediation, and biogeochemical cycling of nutrients in terrestrial to aquatic ecosystems and vice versa. It is further required for human existence in the form of food, fibers, medicines, and biological control. Therefore, consistent monitoring, assessment, and conservation of ecological habitats and diversity of flora and fauna of aquatic and terrestrial ecosystems is the need of the hour. In this article, we are presenting an assessment based upon the literature survey on the biodiversity of Tabuk region of Kingdom of Saudi Arabia. A comprehensive study on the biodiversity of plants, animals and microorganisms of the Tabuk region (Tabuk city, Tayma, Haql, Sharma, Duba, Al Wajh and Umluj, Al Zetah, Al Beda’a, etc.) are included in this review. This study will be a landmark as it is conducted at the inception of NEOM project in Tabuk region. It will help the authorities to enhance the native green cover, decrease desertification, regenerate biodiversity in natural environments, and advance the quality of life, to achieve the objectives of the Saudi Green Initiative and VISION 2030. However, studies and investigations on Tabuk biodiversity are still limited and need further exploration. Recently, a joint work between King Salman Royal Natural Reserve (KSRNR) and Department of Biology of University of Tabuk is underway to monitor the baseline data of flora and fauna of this region

    Assessment of Antioxidant and Anticancer Activities of Microgreen Alga Chlorella vulgaris and Its Blend with Different Vitamins

    No full text
    There is a very vital antioxidant extracted from microgreen alga. Chlorella vulgaris has major advantages and requires high yield worldwide. Some microalgae require vitamins for their growth promotion. This study was held to determine the impact of different vitamins including Thiamine (B1), Riboflavin (B2), Pyridoxine (B6), and Ascorbic acid (c) at concentrations of 0.02, 0.04, 0.06, and 0.08 mg/L of each. Each vitamin was added to the BG11 growth medium to determine the effect on growth, total carbohydrate, total protein, pigments content, antioxidant activities of Chlorella vulgaris. Moreover, antitumor effects of methanol extract of C. vulgaris without and with the supplement of thiamine against Human prostate cancer (PC-3), Hepatocellular carcinoma (HEPG-2), Colorectal carcinoma (HCT-116) and Epitheliod Carcinoma (Hela) was estimated in vitro. C. vulgaris supplemented with various vitamins showed a significant increase in biomass, pigment content, total protein, and total carbohydrates in comparison to the control. Thiamine was the best vitamin influencing as an antioxidant. C. vulgaris supplemented with thiamine had high antitumor effects in vitro. So, it’s necessary to add vitamins to BG11 media for enhancement of the growth and metabolites

    Characterization and Anticancer Activity of Biosynthesized Au/Cellulose Nanocomposite from Chlorella vulgaris

    No full text
    Therapeutic selectivity is a critical issue in cancer therapy. As a result of its adjustable physicochemical characteristics, the Au/cellulose nanocomposite currently holds a lot of potential for solving this challenge. This work was designed to prepare a Au/cellulose nanocomposite with enhanced anticancer activity through the regulation of the mitogen-activated protein kinases (MAPK) signaling pathway. Nanocellulose, nanogold (AuNPs), and a Au/cellulose nanocomposite were biosynthesized from microgreen alga Chlorella vulgaris. Using UV-Vis absorption spectroscopy, transmission electron microscope (TEM), zeta potential analyzer, and Fourier transform infrared spectroscopy (FTIR), the synthesized nanoparticles were confirmed and characterized. In human alveolar basal epithelial cells (A549 cells), the selectivity and anticancer activity of the produced nanoparticles were evaluated. The cytotoxicity results revealed that the inhibitory concentration (IC50) of the Au/cellulose nanocomposite against A549 cancer lung cells was 4.67 ± 0.17 µg/µL compared to 182.75 ± 6.45 µg/µL in the case of HEL299 normal lung fibroblasts. It was found that treatment with nanocellulose and the Au/cellulose nanocomposite significantly increased (p < 0.05) the relative expression of tumor suppressor 53 (p53) in comparison to control cells. They also significantly (p < 0.05) decreased the relative expression of the Raf-1 gene. These findings indicate that nanocellulose and the Au/cellulose nanocomposite regulate cell cycles mostly via the motivation of p53 gene expression and reduction of Raf-1 gene expression

    Effectiveness of Se/ZnO NPs in Enhancing the Antibacterial Activity of Resin-Based Dental Composites

    No full text
    Biofilm formation in the resin-composite interface is a major challenge for resin-based dental composites. Using doped z nanoparticles (NPs) to enhance the antibacterial properties of resin composites can be an effective approach to prevent this. The present study focused on the effectiveness of Selenium-doped ZnO (Se/ZnO) NPs as an antibacterial nanofiller in resin composites and their impact on their mechanical properties. Pristine and Se/ZnO NPs were synthesized by the mechanochemical method and confirmed through UV-Vis Spectroscopy, FTIR (Fourier Transform Infrared) analysis, X-ray Diffraction (XRD) crystallography, Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), and Zeta analysis. The resin composites were then modified by varying concentrations of pristine and Se/ZnO NPs. A single species (S. mutans and E. faecalis) and a saliva microcosm model were utilized for antibacterial analysis. Hemolytic assay and compressive strength tests were also performed to test the modified composite resin’s cytotoxicity and mechanical strength. When incorporated into composite resin, 1% Se/ZnO NPs showed higher antibacterial activity, biocompatibility, and higher mechanical strength when compared to composites with 1% ZnO NPs. The Se/ZnO NPs has been explored for the first time as an efficient antibacterial nanofiller for resin composites and showed effectiveness at lower concentrations, and hence can be an effective candidate in preventing secondary caries by limiting biofilm formation

    Dental Composites with Magnesium Doped Zinc Oxide Nanoparticles Prevent Secondary Caries in the Alloxan-Induced Diabetic Model

    No full text
    Antibacterial restorative materials against caries-causing bacteria are highly preferred among high-risk patients, such as the elderly, and patients with metabolic diseases such as diabetes. This study aimed to enhance the antibacterial potential of resin composite with Magnesium-doped Zinc oxide (Mg-doped ZnO) nanoparticles (NPs) and to look for their effectiveness in the alloxan-induced diabetic model. Hexagonal Mg-doped ZnO NPs (22.3 nm diameter) were synthesized by co-precipitation method and characterized through ultraviolet-visible (UV-Vis), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analysis. The Mg-doped ZnO NPs (1, 2.5 and 5% w/w) were then evaluated for antibacterial activity using a closed system in vitro biofilm model. Significant enhancement in the antibacterial properties was observed in composites with 1% Mg-doped ZnO compared to composites with bare ZnO reinforced NPs (Streptococcus mutans, p = 0.0005; Enterococcus faecalis, p = 0.0074, Saliva microcosm, p < 0.0001; Diabetic Saliva microcosm, p < 0.0001). At 1–2.5% Mg-doped ZnO NPs concentration, compressive strength and biocompatibility of composites were not affected. The pH buffering effect was also achieved at these concentrations, hence not allowing optimal conditions for the anaerobic bacteria to grow. Furthermore, composites with Mg-doped ZnO prevented secondary caries formation in the secondary caries model of alloxan-induced diabetes. Therefore, Mg-doped ZnO NPs are highly recommended as an antibacterial agent for resin composites to avoid biofilm and subsequent secondary caries formation in high-risk patients

    Characterizations of Alpha-Cellulose and Microcrystalline Cellulose Isolated from Cocoa Pod Husk as a Potential Pharmaceutical Excipient

    No full text
    Cellulose is a non-toxic, bio-degradable, and renewable biopolymer which is abundantly available in nature. The most common source of commercial microcrystalline cellulose is fibrous wood pulp. Cellulose and its derivatives have found wide commercial applications in the pharmaceutical, cosmetic, food, paper, textile, and engineering industries. This study aims to isolate and characterize cellulose forms from cocoa pod husk (CPH) and to assess its mechanical and disintegration properties as a direct compression excipient in metronidazole tablets. Two isolated cellulose types (i.e., cocoa alpha-cellulose (CAC) and cocoa microcrystalline cellulose (C-MCC)) were compared with avicel (AV). CAC and C-MCC were characterized for their physicochemical properties using Scanning Electron Microscopy (SEM), FTIR spectroscopy, Differential Scanning Calorimetry (DSC), and X-Ray Powder Diffraction (XRD). Metronidazole tablets were produced by direct compression with cellulose. The mechanical and disintegration properties of the tablets were evaluated. CAC and C-MCC yield was 42.3% w/w and 38.25% w/w, respectively. Particle diameters were significantly different with CAC (282.22 μm) > C-MCC (161.32 μm) > AV (72.51 μm). CAC and C-MCC had a better flow than AV. SEM revealed the fibrous nature of the cellulose. FTIR and XRD analysis confirmed the presence of cellulose with crystallinity index of 69.26%, 43.83%, and 26.32% for AV, C-MCC, and CAC, respectively. C-MCC and AV are more crystalline and thermally stable at high temperatures compared to CAC. The mechanical and disintegration properties of C-MCC and AV tablets complied with pharmacopeia specifications. Taken together, C-MCC isolated from CPH displayed some fundamental characteristics suitable for use as a pharmaceutical excipient and displayed better properties compared to that of AV
    corecore