125 research outputs found
Domain and stripe formation between hexagonal and square ordered fillings of colloidal particles on periodic pinning substrates
Using large scale numerical simulations, we examine the ordering of colloidal particles on square periodic
two-dimensional muffin-tin substrates consisting of a flat surface with localized pinning sites. We show
that when there are four particles per pinning site, the particles adopt a hexagonal ordering, while for
five particles per pinning site, a square ordering appears. For fillings between four and five particles per
pinning site, we identify a rich variety of distinct ordering regimes, including disordered grain
boundaries, crystalline stripe structures, superlattice orderings, and disordered patchy arrangements. We
characterize the different regimes using Voronoi analysis, energy dispersion, and ordering of the
domains. We show that many of the boundary formation features we observe occur for a wide range of
other fillings. Our results demonstrate that grain boundary tailoring can be achieved with muffin-tin
periodic pinning substrates
Sense of coherence and diabetes: A prospective occupational cohort study
<p>Abstract</p> <p>Background</p> <p>Sense of coherence (SOC) is an individual characteristic related to a positive life orientation leading to effective coping. A weak SOC has been associated with indicators of general morbidity and mortality. However, the relationship between SOC and diabetes has not been studied in prospective design. The present study prospectively examined the relationship between a weak SOC and the incidence of diabetes.</p> <p>Methods</p> <p>The relationship between a weak SOC and the incidence of diabetes was investigated among 5827 Finnish male employees aged 18–65 at baseline (1986). SOC was measured by questionnaire survey at baseline. Data on prescription diabetes drugs from 1987 to 2004 were obtained from the Drug Imbursement Register held by the Social Insurance Institution.</p> <p>Results</p> <p>During the follow-up, 313 cases of diabetes were recorded. A weak SOC was associated with a 46% higher risk of diabetes in participants who had been =<50 years of age on entry into the study. This association was independent of age, education, marital status, psychological distress, self-rated health, smoking status, binge drinking and physical activity. No similar association was observed in older employees.</p> <p>Conclusion</p> <p>The results suggest that besides focusing on well-known risk factors for diabetes, strengthening SOC in employees of =<50 years of age can also play a role in attempts to tackle increasing rates of diabetes.</p
Psychologie der Kreativität
Ein kleiner Streifzug durch die psychologische Kreativitätsforschung befasst sich mit den Möglichkeiten der Erfassung kreativer Prozesse, ihrer Manifestation, den Determinanten, der Frage nach der Notwendigkeit zu kreativem Denken und schließlich Erkenntnissen darüber, wie kreatives Denken gefördert werden kann
Surface effects in nanoscale structures investigated by a fully-nonlocal energy-based quasicontinuum method
Surface effects in nanoscale mechanical systems such as nanoporous solids or small-scale structures can have a significant impact on the effective material response which deviates from the material behavior of bulk solids. Understanding such phenomena requires modeling techniques that locally retain atomistic information while transitioning to the relevant macroscopic length scales. We recently introduced a fully-nonlocal energy based quasicontinuum (QC) method equipped with new summation rules. This technique accurately bridges across scales from atomistics to the continuum through a thermodynamically-consistent coarse-graining scheme. Beyond minimizing energy approximation errors and spurious force artifacts, the new method also qualifies to describe free surfaces, which is reported here. Surfaces present a major challenge to coarse-grained atomistics, which has oftentimes been circumvented by costly ad hoc extensions of the traditional QC method. We show that our new coarse-graining scheme successfully and automatically reduces spurious force artifacts near free surfaces. After discussing the computational model, we demonstrate its benefits in the presence of free surfaces by several nanomechanical examples including surface energy calculations, elastic size effects in nano-rods and in plates with nano-sized holes. Overall, we demonstrate the importance of surface effects as well as a new strategy to accurately capture those computationally via coarse-grained atomistics
- …