647 research outputs found

    A Critical Analysis of Techniques and Basic Phenomena Related to Deposition of High Temperature Superconducting Thin Films

    Get PDF
    The processes involved in plasma and ion beam sputter-, electron evaporation-, and laser ablation-deposition of high temperature superconducting thin films are critically reviewed. Recent advances in the development of these techniques are discussed in relation to basic physical phenomena, specific to each technique, which must be understood before high quality films can be produced. Low temperature processing of films is a common goal for each technique, particularly in relation to integrating high temperature superconducting films with the current microelectronics technology. Research is now demonstrating that the introduction of oxygen into the growing film, simultaneously with the deposition of the film components, is necessary to produce as-deposited superconducting films at relatively low substrate temperatures

    Case report: Malignant teratoma of the uterine corpus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Teratomas are the commonest germ cell tumours and are most frequently found in the testes and ovary. Extragonadal teratomas are rare and mainly occur in midline structures. Uterine teratomas are extremely rare with only a few previous case reports, usually involving mature teratomas of the uterine cervix.</p> <p>Case Presentation</p> <p>We report an 82-year-old lady presenting with post-menopausal bleeding. Initial investigations revealed a benign teratoma of the uterus which was removed. Her symptoms persisted and a recurrent, now malignant, teratoma of the uterine corpus was resected at hysterectomy. Six months after surgery she relapsed with para-aortic lymphadenopathy and was treated with a taxane, etoposide and cisplatin-containing chemotherapy regimen followed by retroperitoneal lymph node dissection.</p> <p>Conclusion</p> <p>In this report we discuss the aetiology, diagnosis and management of uterine teratomas, and review previous case studies.</p

    Ethics, Nanobiosensors and Elite Sport: The Need for a New Governance Framework

    Get PDF
    Individual athletes, coaches and sports teams seek continuously for ways to improve performance and accomplishment in elite competition. New techniques of performance analysis are a crucial part of the drive for athletic perfection. This paper discusses the ethical importance of one aspect of the future potential of performance analysis in sport, combining the field of biomedicine, sports engineering and nanotechnology in the form of ‘Nanobiosensors’. This innovative technology has the potential to revolutionise sport, enabling real time biological data to be collected from athletes that can be electronically distributed. Enabling precise real time performance analysis is not without ethical problems. Arguments concerning (1) data ownership and privacy; (2) data confidentiality; and (3) athlete welfare are presented alongside a discussion of the use of the Precautionary Principle in making ethical evaluations. We conclude, that although the future potential use of Nanobiosensors in sports analysis offers many potential benefits, there is also a fear that it could be abused at a sporting system level. Hence, it is essential for sporting bodies to consider the development of a robust ethically informed governance framework in advance of their proliferated use

    Serum and glucocorticoid-inducible kinase1 increases plasma membrane wt-CFTR in human airway epithelial cells by inhibiting its endocytic retrieval

    Get PDF
    Background: Chloride (Cl) secretion by the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) located in the apical membrane of respiratory epithelial cells plays a critical role in maintenance of the airway surface liquid and mucociliary clearance of pathogens. Previously, we and others have shown that the serum and glucocorticoid-inducible kinase-1 (SGK1) increases wild type CFTR (wt-CFTR) mediated Cl transport in Xenopus oocytes by increasing the amount of wt-CFTR protein in the plasma membrane. However, the effect of SGK1 on the membrane abundance of wt-CFTR in airway epithelial cells has not been examined, and the mechanism whereby SGK1 increases membrane wt-CFTR has also not been examined. Thus, the goal of this study was to elucidate the mechanism whereby SGK1 regulates the membrane abundance of wt-CFTR in human airway epithelial cells. Methods and Results: We report that elevated levels of SGK1, induced by dexamethasone, increase plasma membrane abundance of wt-CFTR. Reduction of SGK1 expression by siRNA (siSGK1) and inhibition of SGK1 activity by the SGK inhibitor GSK 650394 abrogated the ability of dexamethasone to increase plasma membrane wt-CFTR. Overexpression of a constitutively active SGK1 (SGK1-S422D) increased plasma membrane abundance of wt-CFTR. To understand the mechanism whereby SGK1 increased plasma membrane wt-CFTR, we examined the effects of siSGK1 and SGK1-S442D on the endocytic retrieval of wt-CFTR. While siSGK1 increased wt-CFTR endocytosis, SGK1-S442D inhibited CFTR endocytosis. Neither siSGK1 nor SGK1-S442D altered the recycling of endocytosed wt-CFTR back to the plasma membrane. By contrast, SGK1 increased the endocytosis of the epidermal growth factor receptor (EGFR). Conclusion: This study demonstrates for the first time that SGK1 selectively increases wt-CFTR in the plasma membrane of human airway epithelia cells by inhibiting its endocytic retrieval from the membrane. © 2014 Bomberger et al

    Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo

    Get PDF
    In the early vertebrate embryo, cardiac progenitor/precursor cells (CPs) give rise to cardiac structures. Better understanding their biological character is critical to understand the heart development and to apply CPs for the clinical arena. However, our knowledge remains incomplete. With the use of single-cell expression profiling, we have now revealed rapid and dynamic changes in gene expression profiles of the embryonic CPs during the early phase after their segregation from the cardiac mesoderm. Progressively, the nascent mesodermal gene Mesp1 terminated, and Nkx2-5+/Tbx5+ population rapidly replaced the Tbx5low+ population as the expression of the cardiac genes Tbx5 and Nkx2-5 increased. At the Early Headfold stage, Tbx5-expressing CPs gradually showed a unique molecular signature with signs of cardiomyocyte differentiation. Lineage-tracing revealed a developmentally distinct characteristic of this population. They underwent progressive differentiation only towards the cardiomyocyte lineage corresponding to the first heart field rather than being maintained as a progenitor pool. More importantly, Tbx5 likely plays an important role in a transcriptional network to regulate the distinct character of the FHF via a positive feedback loop to activate the robust expression of Tbx5 in CPs. These data expands our knowledge on the behavior of CPs during the early phase of cardiac development, subsequently providing a platform for further study

    Characterization of a fluvial aquifer at a range of depths and scales: the Triassic St Bees Sandstone Formation, Cumbria, UK

    No full text
    Fluvial sedimentary successions represent porous media that host groundwater and geothermal resources. Additionally, they overlie crystalline rocks hosting nuclear waste repositories in rift settings. The permeability characteristics of an arenaceous fluvial succession, the Triassic St Bees Sandstone Formation in England (UK), are described, from core-plug to well-test scale up to ~1 km depth. Within such lithified successions, dissolution associated with the circulation of meteoric water results in increased permeability (K~10−1–100 m/day) to depths of at least 150 m below ground level (BGL) in aquifer systems that are subject to rapid groundwater circulation. Thus, contaminant transport is likely to occur at relatively high rates. In a deeper investigation (> 150 m depth), where the aquifer has not been subjected to rapid groundwater circulation, well-test-scale hydraulic conductivity is lower, decreasing from K~10−2 m/day at 150–400 m BGL to 10−3 m/day down-dip at ~1 km BGL, where the pore fluid is hypersaline. Here, pore-scale permeability becomes progressively dominant with increasing lithostatic load. Notably, this work investigates a sandstone aquifer of fluvial origin at investigation depths consistent with highly enthalpy geothermal reservoirs (~0.7–1.1 km). At such depths, intergranular flow dominates in unfaulted areas with only minor contribution by bedding plane fractures. However, extensional faults represent preferential flow pathways, due to presence of high connective open fractures. Therefore, such faults may (1) drive nuclear waste contaminants towards the highly permeable shallow (< 150 m BGL) zone of the aquifer, and (2) influence fluid recovery in geothermal fields

    A novel ESR2 frameshift mutation predisposes to medullary thyroid carcinoma and causes inappropriate RET expression

    Get PDF
    • …
    corecore