50 research outputs found

    Kindling the Domain of Social Reform Through Law: A Case Study

    Get PDF

    Remapping the Domain of Property in Africa

    Get PDF

    Bridges and Barricades: Rethinking Polemics and Intransigence in the Campaign against Female Circumcision

    Get PDF

    Coping with drought : Strategies to improve genetic adaptation of common bean to drought-prone regions of Africa

    Get PDF

    Landscape positions dictating crop fertilizer responses in wheat-based farming systems of East African Highlands

    Get PDF
    Improving fertilizer use efficiency has remained a challenge, particularly for small-scale farming in undulating ‘abnormal’ landscapes of East Africa. Milne's 1930s concept on ‘Catena’ was considered as a breakthrough in understanding soil variability and its implication on productivity in East African highlands. However, there is limited information on how the ‘Catena’ features could be used for fine tuning fertilizer recommendations. We initiated multiple on-farm replicated experiments in three wheat-growing districts (Endamohoni, Lemo and Worreilu) in the Ethiopian highlands in 2014, 2015 and 2016 to assess landscape positions affecting crop-nutrient responses, identify yield limiting nutrients across the ‘Catena’ (N, P, K, S and Zn) and quantify effects of landscape positions on resources use efficiency. We clustered farmlands across the ‘Catena’ (Hillslopes, Midslopes and Footslopes) based on land scape positions in the respective locations. Wheat yield was more strongly and significantly affected by landscape positions (P N92 P46) while differences between landscape positions diminish at lower rates. Yield benefits due to application of K was significant only in the dry years (P < 0.05), while there was hardly any yield benefit from the application of zinc and sulfur. The crop nitrogen recovery fraction and crop water productivity decreased with an increasing slope regardless of nutrient combinations. The results indicated that the landscape position could be considered as a proxy indicator for targeted fertilizer application, particularly in farms with undulating topographic features. Hillslopes are better served by the application of organic fertilizers along with conservation measures as applying higher rates of mineral fertilizer in hillslopes would rather increase the risk of downstream nutrient movement

    Differences in the nutritional quality of improved finger millet genotypes in Ethiopia

    Get PDF
    Improved crop genotypes are constantly introduced. However, information on their nutritional quality is generally limited. The present study reports the proximate composition and the concentration and relative bioavailability of minerals of improved finger millets of different genotypes. Grains of finger millet genotypes (n = 15) grown in research station during 2019 and 2020 in Ethiopia, and replicated three times in a randomized complete block design, were analysed for proximate composition, mineral concentration (iron, zinc, calcium, selenium), and antinutritional factors (phytate, tannin and oxalate). Moreover, the antinutritional factors to mineral molar ratio method was used to estimate mineral bioavailability. The result shows a significant genotypic variation in protein, fat and fibre level, ranging from 10% to 14.6%, 1.0 to 3.8%, and 1.4 to 4.6%, respectively. Similarly, different finger millets genotypes had significantly different mineral concentrations ranging from 3762 ± 332 to 5893 ± 353 mg kg−1 for Ca, 19.9 ± 1.6 to 26.2 ± 2.7 mg kg−1 for Zn, 36.3 ± 4.6 to 52.9 ± 9.1 mg kg−1 for Fe and 36.6 ± 11 to 60.9 ± 22 µg kg−1 for Se. Phytate (308–360 µg g−1), tannin (0.15–0.51 mg g−1) and oxalate (1.26–4.41 mg g−1) concentrations were also influenced by genotype. Antinutritional factors to minerals molar ratio were also significantly different by genotypes but were below the threshold for low mineral bioavailability. Genotype significantly influenced mineral and antinutritional concentrations of finger millet grains. In addition, all finger millet genotypes possess good mineral bioavailability. Especially, the high Ca concentration in finger millet, compared to in other cereals, could play a vital role to combating Ca deficiency. The result suggests the different finger millet genotypes possess good nutrient content and may contribute to the nutrition security of the local people

    A review of soil fertility management and crop response to fertilizer application in Ethiopia: Towards development of site- and context-specific fertilizer recommendation

    Get PDF
    More than 80% of the Ethiopian population is dependent on agriculture, which contributes about 50% of the country’s gross domestic product (GDP) and more than 80% of its export earnings. Although the agricultural sector is the engine of economic growth and the country has designed an “Agriculturalled Industrialization”, the agricultural sector is still characterized by severe soil erosion, high levels of nutrient mining, low use of external inputs, low productivity and limited capacity to respond to environmental shocks. Thus, the country is grappling with a daunting challenge: produce more food for a fast-growing population on low fertility soils on land owned by poor smallholder farmers who are unlikely to afford adequate input use. To address these challenges, several efforts are being made since the 1960s to assess the potential effects of various sources of organic and mineral fertilizers on crop yield and soil fertility status of the differing farming systems in the country..

    Plant Available Zinc Is Influenced by Landscape Position in the Amhara Region, Ethiopia

    Get PDF
    Zinc (Zn) is an important element determining the grain quality of staple food crops and deficient in many Ethiopian soils. However, farming systems are highly variable in Ethiopia due to different soil types and landscape cropping positions. Zinc availability and uptake by plants from soil and fertilizer sources are governed by the retention and release potential of the soil, usually termed as adsorption and desorption, respectively. The aim of this study was to characterize the amount of plant available Zn at different landscape positions. During the 2018/19 cropping season, adsorption-desorption studies were carried out on soil samples collected from on-farm trials conducted at Aba Gerima, Debre Mewi and Markuma in the Amhara Region. In all locations and landscape positions, adsorption and desorption increased with increasing Zn additions. The amount of adsorption and desorption was highly associated with the soil pH, the soil organic carbon concentration and cation exchange capacity, and these factors are linked to landscape positions. The Freundlich isotherm fitted very well to Zn adsorption (r2 0.87–0.99) and desorption (r2 0.92–0.99), while the Langmuir isotherm only fitted to Zn desorption (r2 0.70–0.93). Multiple regression models developed by determining the most influential soil parameters for Zn availability could be used to inform Zn fertilizer management strategies for different locations and landscape positions in this region, and thereby improve plant Zn use efficienc
    corecore