2 research outputs found

    Harnessing the Power of Multi-Task Pretraining for Ground-Truth Level Natural Language Explanations

    Full text link
    Natural language explanations promise to offer intuitively understandable explanations of a neural network's decision process in complex vision-language tasks, as pursued in recent VL-NLE models. While current models offer impressive performance on task accuracy and explanation plausibility, they suffer from a range of issues: Some models feature a modular design where the explanation generation module is poorly integrated with a separate module for task-answer prediction, employ backbone models trained on limited sets of tasks, or incorporate ad hoc solutions to increase performance on single datasets. We propose to evade these limitations by applying recent advances in large-scale multi-task pretraining of generative Transformer models to the problem of VL-NLE tasks. Our approach outperforms recent models by a large margin, with human annotators preferring the generated explanations over the ground truth in two out of three evaluated datasets. As a novel challenge in VL-NLE research, we propose the problem of multi-task VL-NLE and show that jointly training on multiple tasks can increase the explanation quality. We discuss the ethical implications of high-quality NLE generation and other issues in recent VL-NLE research.Comment: Minor change

    Explain yourself! Effects of Explanations in Human-Robot Interaction

    Full text link
    Recent developments in explainable artificial intelligence promise the potential to transform human-robot interaction: Explanations of robot decisions could affect user perceptions, justify their reliability, and increase trust. However, the effects on human perceptions of robots that explain their decisions have not been studied thoroughly. To analyze the effect of explainable robots, we conduct a study in which two simulated robots play a competitive board game. While one robot explains its moves, the other robot only announces them. Providing explanations for its actions was not sufficient to change the perceived competence, intelligence, likeability or safety ratings of the robot. However, the results show that the robot that explains its moves is perceived as more lively and human-like. This study demonstrates the need for and potential of explainable human-robot interaction and the wider assessment of its effects as a novel research direction
    corecore