109 research outputs found

    Detection of subclinical keratoconus using biometric parameters

    Get PDF
    The validation of innovative methodologies for diagnosing keratoconus in its earliest stages is of major interest in ophthalmology. So far, subclinical keratoconus diagnosis has been made by combining several clinical criteria that allowed the definition of indices and decision trees, which proved to be valuable diagnostic tools. However, further improvements need to be made in order to reduce the risk of ectasia in patients who undergo corneal refractive surgery. The purpose of this work is to report a new subclinical keratoconus detection method based in the analysis of certain biometric parameters extracted from a custom 3D corneal model. This retrospective study includes two groups: the first composed of 67 patients with healthy eyes and normal vision, and the second composed of 24 patients with subclinical keratoconus and normal vision as well. The proposed detection method generates a 3D custom corneal model using computer-aided graphic design (CAGD) tools and corneal surfaces’ data provided by a corneal tomographer. Defined bio-geometric parameters are then derived from the model, and statistically analysed to detect any minimal corneal deformation. The metric which showed the highest area under the receiver-operator curve (ROC) was the posterior apex deviation. This new method detected differences between healthy and sub-clinical keratoconus corneas by using abnormal corneal topography and normal spectacle corrected vision, enabling an integrated tool that facilitates an easier diagnosis and follow-up of keratoconus.This publication has been carried out in the framework of the Thematic Network for Co-Operative Research in Health (RETICS) reference number RD16/0008/0012 financed by the Carlos III Health Institute-General Subdirection of Networks and Cooperative Investigation Centers (R&D&I National Plan 2013–2016) and the European Regional Development Fund (FEDER)

    Rapid short-duration hypothermia with cold saline and endovascular cooling before reperfusion reduces microvascular obstruction and myocardial infarct size

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to evaluate the combination of a rapid intravenous infusion of cold saline and endovascular hypothermia in a closed chest pig infarct model.</p> <p>Methods</p> <p>Pigs were randomized to pre-reperfusion hypothermia (n = 7), post-reperfusion hypothermia (n = 7) or normothermia (n = 5). A percutaneous coronary intervention balloon was inflated in the left anterior descending artery for 40 min. Hypothermia was started after 25 min of ischemia or immediately after reperfusion by infusion of 1000 ml of 4°C saline and endovascular hypothermia. Area at risk was evaluated by in vivo SPECT. Infarct size was evaluated by ex vivo MRI.</p> <p>Results</p> <p>Pre-reperfusion hypothermia reduced infarct size/area at risk by 43% (46 ± 8%) compared to post-reperfusion hypothermia (80 ± 6%, p < 0.05) and by 39% compared to normothermia (75 ± 5%, p < 0.05). Pre-reperfusion hypothermia infarctions were patchier in appearance with scattered islands of viable myocardium. Pre-reperfusion hypothermia abolished (0%, p < 0.001), and post-reperfusion hypothermia significantly reduced microvascular obstruction (10.3 ± 5%; p < 0.05), compared to normothermia: (30.2 ± 5%).</p> <p>Conclusion</p> <p>Rapid hypothermia with cold saline and endovascular cooling before reperfusion reduces myocardial infarct size and microvascular obstruction. A novel finding is that hypothermia at the onset of reperfusion reduces microvascular obstruction without reducing myocardial infarct size. Intravenous administration of cold saline combined with endovascular hypothermia provides a method for a rapid induction of hypothermia suggesting a potential clinical application.</p

    Tacaribe Virus but Not Junin Virus Infection Induces Cytokine Release from Primary Human Monocytes and Macrophages

    Get PDF
    The mechanisms underlying the development of disease during arenavirus infection are poorly understood. However, common to all hemorrhagic fever diseases is the involvement of macrophages as primary target cells, suggesting that the immune response in these cells may be of paramount importance during infection. Thus, in order to identify features of the immune response that contribute to arenavirus pathogenesis, we have examined the growth kinetics and cytokine profiles of two closely related New World arenaviruses, the apathogenic Tacaribe virus (TCRV) and the hemorrhagic fever-causing Junin virus (JUNV), in primary human monocytes and macrophages. Both viruses grew robustly in VeroE6 cells; however, TCRV titres were decreased by approximately 10 fold compared to JUNV in both monocytes and macrophages. Infection of both monocytes and macrophages with TCRV also resulted in the release of high levels of IL-6, IL-10 and TNF-α, while levels of IFN-α, IFN-β and IL-12 were not affected. However, we could show that the presence of these cytokines had no direct effect on growth of either TCRV of JUNV in macrophages. Further analysis also showed that while the production of IL-6 and IL-10 are dependent on viral replication, production of TNF-α also occurs after exposure to UV-inactivated TCRV particles and is thus independent of productive virus infection. Surprisingly, JUNV infection did not have an effect on any of the cytokines examined indicating that, in contrast to other viral hemorrhagic fever viruses, macrophage-derived cytokine production is unlikely to play an active role in contributing to the cytokine dysregulation observed in JUNV infected patients. Rather, these results suggest that an early, controlled immune response by infected macrophages may be critical for the successful control of infection of apathogenic viruses and prevention of subsequent disease, including systemic cytokine dysregulation

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Myocardial ischemia and reperfusion: The role of oxygen radicals in tissue injury

    Full text link
    Thrombolytic therapy has gained widespread acceplance as a means of treating coronary artery thrombosis in patients with acute myocardial infarction. Although experimental data have demonstrated that timely reperfusion limits the extent of infarction caused by regional ischemia, there is growing evidence that reperfusion is associated with an inflammatory response to ischemia that exacerbates the tissue injury. Ischemic myocardium releases archidonate and complement-derived chemotactic factors, e.g., leukotriene B 4 and C 5a , which attract and activate neutrophils. Reperfusion of ischemic myocardium accelerates the influx of neutrophils, which release reactive oxygen products, such as superoxide anion and hydrogen peroxide, resulting in the formation of a hydroxyl radical and hypochlorous acid. The latter two species may damage viable endothelial cells and myocytes via the peroxidation of lipids and oxidation of protein sulfhydryl groups, leading to perturbations of membrane permeability and enzyme function. Neutrophil depletion by antiserum and inhibition of neutrophil function by drugs, e.g., ibuprofen, prostaglandins (prostacyclin and PGE 1 ), or a monoclonal antibody, to the adherence-promoting glycoprotein Mo-1 receptor, have been shown to limit the extent of canine myocardial injury due to coronary artery occlusion/reperfusion. Recent studies have challenged the hypothesis that xanthine-oxidase-derived oxygen radicals are a cause of reperfusion injury. Treatment with allopurinol or oxypurinol may exert beneficial effects on ischemic myocardium that are unrelated to the inhibition of xanthine oxidase. Furthermore, the human heart may lack xanthine oxidase activity. Further basic research is needed, therefore, to clarify the importance of xanthine oxidase in the pathophysiology of reperfusion injury. Current data are highly suggestive of a deleterious role of the neutrophil in organ reperfusion and justify consideration of the clinical investigation of neutrophil inhibitors in patients receiving thrombolytic agents during the evolution of an acute myocardial infarction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44595/1/10557_2004_Article_BF00133206.pd

    KDM1A microenvironment, its oncogenic potential, and therapeutic significance

    Get PDF
    The lysine-specific histone demethylase 1A (KDM1A) was the first demethylase to challenge the concept of the irreversible nature of methylation marks. KDM1A, containing a flavin adenine dinucleotide (FAD)-dependent amine oxidase domain, demethylates histone 3 lysine 4 and histone 3 lysine 9 (H3K4me1/2 and H3K9me1/2). It has emerged as an epigenetic developmental regulator and was shown to be involved in carcinogenesis. The functional diversity of KDM1A originates from its complex structure and interactions with transcription factors, promoters, enhancers, oncoproteins, and tumor-associated genes (tumor suppressors and activators). In this review, we discuss the microenvironment of KDM1A in cancer progression that enables this protein to activate or repress target gene expression, thus making it an important epigenetic modifier that regulates the growth and differentiation potential of cells. A detailed analysis of the mechanisms underlying the interactions between KDM1A and the associated complexes will help to improve our understanding of epigenetic regulation, which may enable the discovery of more effective anticancer drugs

    The Real Role of β-Blockers in Daily Cardiovascular Therapy

    Get PDF

    Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes.

    Get PDF
    Abstract BACKGROUND: The cardiovascular effects of adding once-weekly treatment with exenatide to usual care in patients with type 2 diabetes are unknown. METHODS: We randomly assigned patients with type 2 diabetes, with or without previous cardiovascular disease, to receive subcutaneous injections of extended-release exenatide at a dose of 2 mg or matching placebo once weekly. The primary composite outcome was the first occurrence of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke. The coprimary hypotheses were that exenatide, administered once weekly, would be noninferior to placebo with respect to safety and superior to placebo with respect to efficacy. RESULTS: In all, 14,752 patients (of whom 10,782 [73.1%] had previous cardiovascular disease) were followed for a median of 3.2 years (interquartile range, 2.2 to 4.4). A primary composite outcome event occurred in 839 of 7356 patients (11.4%; 3.7 events per 100 person-years) in the exenatide group and in 905 of 7396 patients (12.2%; 4.0 events per 100 person-years) in the placebo group (hazard ratio, 0.91; 95% confidence interval [CI], 0.83 to 1.00), with the intention-to-treat analysis indicating that exenatide, administered once weekly, was noninferior to placebo with respect to safety (P<0.001 for noninferiority) but was not superior to placebo with respect to efficacy (P=0.06 for superiority). The rates of death from cardiovascular causes, fatal or nonfatal myocardial infarction, fatal or nonfatal stroke, hospitalization for heart failure, and hospitalization for acute coronary syndrome, and the incidence of acute pancreatitis, pancreatic cancer, medullary thyroid carcinoma, and serious adverse events did not differ significantly between the two groups. CONCLUSIONS: Among patients with type 2 diabetes with or without previous cardiovascular disease, the incidence of major adverse cardiovascular events did not differ significantly between patients who received exenatide and those who received placebo. (Funded by Amylin Pharmaceuticals; EXSCEL ClinicalTrials.gov number, NCT01144338 .)

    Introduction to the physics of the total cross section at LHC

    Get PDF
    corecore