19 research outputs found

    Antimicrobial susceptibility profiles and genotyping of Neisseria meningitidis of serogroup C, Italy, 2000–2020

    Get PDF
    BackgroundIn Italy the introduction of meningococcal C conjugate vaccine in 2005 has led to a significant reduction of invasive meningococcal disease (IMD) caused by Neisseria meningitidis of serogroup C (MenC). However, this serogroup is still responsible of sporadic cases, clusters and local outbreaks. The study aims to investigate the genotype and antimicrobial susceptibility profile of MenC isolates collected in Italy from 2000 to 2020.MethodsBacterial isolates and biological samples (blood or cerebrospinal fluid) from invasive meningococcal cases are collected and characterized at the National Reference Laboratory for IMD of Istituto Superiore di Sanità. Antimicrobial susceptibility was determined by MIC Test Strip Method and interpreted according to the EUCAST breakpoints guideline. Genotypic characteristics, including multi locus sequence typing (MLST), finetype, and antimicrobial resistance target genes were performed and analyzed using the PubMLST database. Genomic comparison of core genome MLST (cgMLST) of MenC genomes was also carried out.ResultsFrom 2000 to 2020, a total of 665 MenC isolates were investigated for antimicrobial susceptibility and 301 for genotyping. Over two decades, almost all MenC isolates resulted susceptible to antimicrobials with few isolates resulting resistant to ciprofloxacin (N = 2), penicillin G (N = 13), and rifampicin (N = 9), respectively. Molecular typing of MenC obtained from isolates or clinical specimens identified mostly the genotype C:P1.5-1,10-8:F3-6:ST-11(cc11). However, phylogenetic analysis, performed on genomes from MenC isolates, identified two sub lineages, 11.1 and 11.2, among cc11, of which the sub lineage 11.2 was the predominant.ConclusionWider application of the genomic analysis and monitoring of antimicrobial susceptibility represent key aspects of IMD surveillance and to monitor the continued evolution of these hyperinvasive strains

    Neisseria meningitidis Antimicrobial Resistance in Italy, 2006 to 2016

    No full text
    The aim of this study was to evaluate the antimicrobial susceptibilities of 866 Neisseria meningitidis invasive strains during 11 years of surveillance in Italy. Two and six strains were resistant to ciprofloxacin and rifampin, respectively. Forty-five percent were penicillin intermediate, associated with hypervirulent serogroup C clonal complex 11. All of the strains were susceptible to cephalosporins

    FHbp variants among meningococci of serogroup B in Italy: Evolution and selective pressure, 2014-2017.

    No full text
    BackgroundNeisseria meningitidis (meningococcus) is the causative agent of invasive meningococcal disease (IMD). Meningococcus of serogroup B (MenB) is one of the main serogroup causing IMD. MenB strains may be prevented by meningococcal B vaccines. In particular, vaccines with Factor H-binding protein (FHbp), classified into two subfamilies (A or B) or in three variants (v1, v2 or v3), are those available. The objective of the study was to investigate the phylogenetic relationships of FHbp subfamilies A and B (variants v1, v2 or v3) genes and proteins, together with their evolution patterns and selective pressure.Materials and methodsOverall, alignments of FHbp nucleotide and protein sequence from 155 MenB samples collected in different parts of Italy, from 2014 to 2017, were analyzed by ClustalW. JModeltest and the Smart Model Selection software were used for the statistical selection of the best-fit substitution models for nucleotide and protein alignments. Site-specific positive and negative selection were estimated through the HYPHY package. The phylogenetic signal was investigated with the likelihood mapping method. The Maximum Likelihood (ML) phylogenetic reconstructions were performed with Phyml.ResultsThe phylogenic analysis identified different clusters within the FHbp subfamily A and B variants, confirming sequence diversity. The pattern of selective pressure in our study indicated that subfamily B FHbp sequences are subjected to greater variations and positive selective pressure respect to subfamily A, with 16 positively supported selected sites identified.ConclusionThe study pointed out the need for continued genomic surveillance for meningococci to monitor selective pressure and amino acidic changes. Monitoring the genetic diversity and molecular evolution of FHbp variants may be useful to investigate genetic diversity which may emerge over time

    Evaluation of the national surveillance system for invasive meningococcal disease, Italy, 2015-2018.

    No full text
    Enhanced laboratory-based surveillance of invasive meningococcal disease (IMD) in Italy was only assessed indirectly by numerically comparing surveillance data cases with hospital discharge records (HDR). In this study, we evaluated the completeness, timeliness and sensitivity of the IMD surveillance in Italy from 2015 to 2018. Completeness and timeliness were described at the national and subnational level. A capture-recapture analysis was conducted to evaluate the sensitivity and positive predictive value (PPV) using HDR as the external source with a combination of deterministic and probabilistic approaches. The characteristics of the unmatched vs. matched cases were compared using multivariable Poisson modeling. Overall, the completeness of data improved, except for specific variables. Timeliness of notifications also improved to a median of 4 days from onset to reporting. For the years 2015-2017, the sensitivity of the surveillance was estimated at 71.4% and the PPV at 77.5%, changing to 80.6% and 66.9% respectively after removing cases with a secondary meningitis diagnosis. We noted substantial sub-national differences. In 2018 sensitivity was 66.5% (135/203) and the PPV was 79.4% (135/170). The adjusted relative risk of being unmatched in 2015-2017 was higher in cases that were ≥60 years, had missing information or symptom onset in December. The IMD surveillance system overall performs well with completeness and timeliness improving in time. Specific challenges identified for individual variables should guide further improvement. Notwithstanding limitations posed by the comparison database, sensitivity and PPV are promising. The study highlights that promoting etiological ascertainment in people ≥60 years and addressing sub-national challenges are the main current challenges to address

    Evaluation of Meningococcal Serogroup C Bactericidal Antibodies after Primary Vaccination: A Multicentre Study, Italy

    No full text
    Here, we evaluated over time in different cohorts of children vaccinated against serogroup C Neisseria meningitidis, the presence of antibodies with neutralizing activity. A total of 348 sera samples of enrolled children by year since vaccination (p < 0.001). Children vaccinated with the tetravalent meningococcal serogroup ACWY vaccine resulted in a high proportion of bactericidal rSBA MenC titer ≥ 1:8 (90.6%, 95% CI: 79.3–96.9%) after a mean time of seven months. Overall, the results provide some evidences on the evaluation of meningococcal serogroup C bactericidal antibodies after primary vaccination

    Reconstruction of dispersal patterns of hypervirulent meningococcal strains of serogroup C:cc11 by phylogenomic time trees

    No full text
    Neisseria meningitidis is one of the few commensal bacteria that can even cause large epidemics of invasive meningococcal disease (IMD). N. meningitis serogroup C belonging to the hypervirulent clonal complex 11 (cc11) represents an important public health threat worldwide. We reconstructed the dispersal patterns of hypervirulent meningococcal strains of serogroup C:cc11 by phylogenomic time trees. In particular, we focused the attention on the epidemic dynamics of C:P1.5.1,10-8:F3-6;ST-11(cc11) meningococci causing outbreaks, as occurred in the Tuscany region, Italy, in 2015 to 2016. A phylogeographic analysis was performed through a Bayesian method on 103 Italian and 208 foreign meningococcal genomes. The C:P1.5.1,10-8:F3-6;ST-11(cc11) genotype dated back to 1995 (1992 to 1998) in the United Kingdom. Two main clades of the hypervirulent genotype were identified in Italy. The Tuscany outbreak isolates were included in different clusters in a specific subclade which originated in the United Kingdom around 2011 and was introduced in Tuscany in 2013 to 2014. In this work, phylogeographic analysis allowed the identification of multiple introductions of these strains in several European countries and connections with extra-European areas. Whole-genome sequencing (WGS) combined with phylogeography enables us to track the dissemination of meningococci and their transmission. The C:P1.5.1,10-8:F3-6;ST-11(cc11) genotype analysis revealed how a hypervirulent strain may be introduced in previously naïve areas, causing a large and long-lasting outbreak

    Carriage meningococcal isolates with capsule null locus dominate among high school students in a non-endemic period, Italy, 2012–2013

    No full text
    Meningococcal disease incidence in Italy remains quite low in the overall population except for infants. Within a study on carriage isolates among high school students we aimed to define: i) the prevalence of carriage isolates, ii) the phenotypic and iii) the molecular features of meningococci by Whole Genome Sequencing (WGS). A total of 1697 pharyngeal samples from undergraduate students (age range 14–19 years) were collected from 2012 to 2013 from six larger cities in Italy. One hundred and twenty culture positive meningococci (7%) were analyzed. Carriage isolates were sent to the National Reference Laboratory for invasive meningococcal disease (IMD) for PCR-based serogroup identification, Multilocus Sequence Typing, PorA and FetA typing. Moreover, factor H binding protein (fHbp), Neisseria Heparin Binding Antigen (NHBA) and Neisserial adhesin A (NadA) were typed. Core genome MLST (cgMLST) was performed on a subsample of 75 carriage isolates. Capsule null locus (cnl) predominated (47%), followed by serogroup B (27%). The antimicrobial susceptibility profile revealed an high prevalence of reduced susceptibility to penicillin G (54%) and a full susceptibility to ceftriaxone, ciprofloxacin and rifampicin. Carriage isolates presented a high genetic diversity: the clonal complexes (cc s ) cc1136, cc198 and cc41/44, were the predominant. An high heterogeneity was also observed for PorA and FetA types. The fhbp and nhba genes were identified in all the carriage isolates; only 5% of the carriage isolates presented the nadA gene. The core genome MLST analysis revealed that the majority of the cnl isolates clustered in a distinct group. The evidence gathered during this study provides the estimate of carriage isolates in high school students in a non-epidemic period in Italy that was lower than expected. Moreover, the highest proportion of carriage isolates were cnl and, overall, they were molecular heterogeneous

    Cross-reactivity of 4CMenB vaccine-induced antibodies against meningococci belonging to non-B serogroups in Italy

    No full text
    The four-component meningococcal serogroup B vaccine (4CMenB) contains antigens present in the majority of meningococci causing invasive meningococcal disease (IMD) and may potentially offer protection against strains belonging to non-B serogroups. This study aimed to evaluate the ability of 4CMenB-induced antibodies to kill, in a human serum bactericidal assay (hSBA), non-B meningococci belonging to the main genotypes responsible for IMD in Italy. Meningococci, collected between 2015 and 2017, was characterized for PorA, FetA and sequence type, and for clonal complex. Twenty non-B isolates, representative of the most frequent genotypes, were molecularly characterized for 4CMenB antigens and tested in hSBA with sera from 4CMenB-vaccinated infants and adolescents. Among twenty isolates, eleven were serogroup C, five were Y, two W and two X. All isolates contained genes encoding for fHbp and NHBA antigens and four harbored the NadA full-length encoding gene. Positive hSBA titers were obtained against all serogroup W, X and Y isolates and against five serogroup C isolates. These data show that the 4CMenB vaccine can induce bactericidal antibodies against genetically representative meningococcal W, Y and X strains from Italy. For serogroup C, different susceptibilities to killing were observed for strains with similar antigenic repertoires

    Protective Role of Combined Polyphenols and Micronutrients against Influenza A Virus and SARS-CoV-2 Infection In Vitro

    No full text
    Polyphenols have been widely studied for their antiviral effect against respiratory virus infections. Among these, resveratrol (RV) has been demonstrated to inhibit influenza virus replication and more recently, it has been tested together with pterostilbene against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In the present work, we evaluated the antiviral activity of polydatin, an RV precursor, and a mixture of polyphenols and other micronutrients, named A5+, against influenza virus and SARS-CoV-2 infections. To this end, we infected Vero E6 cells and analyzed the replication of both respiratory viruses in terms of viral proteins synthesis and viral titration. We demonstrated that A5+ showed a higher efficacy in inhibiting both influenza virus and SARS-CoV-2 infections compared to polydatin treatment alone. Indeed, post infection treatment significantly decreased viral proteins expression and viral release, probably by interfering with any step of virus replicative cycle. Intriguingly, A5+ treatment strongly reduced IL-6 cytokine production in influenza virus-infected cells, suggesting its potential anti-inflammatory properties during the infection. Overall, these results demonstrate the synergic and innovative antiviral efficacy of A5+ mixture, although further studies are needed to clarify the mechanisms underlying its inhibitory effect
    corecore