41 research outputs found
Recommended from our members
Three weeks of early-onset exercise prolongs obesity resistance in DIO rats after exercise cessation
We assessed the effect of early-onset exercise as a means of preventing childhood obesity using juvenile male rats selectively bred to develop diet-induced obesity (DIO) or to be diet resistant (DR) when fed a 31% fat high-energy diet. Voluntary wheel running begun at 36 days of age selectively reduced adiposity in DIO vs. DR rats. Other 4-wk-old DIO rats fed a high-energy diet and exercised (Ex) for 13 wk increased their core temperature, gained 22% less body weight, and had 39% lighter fat pads compared with sedentary (Sed) rats. When wheels were removed after 6 wk (6 wk Ex/7 wk Sed), rats gained less body weight over the next 7 wk than Sed rats and still had comparable adipose pad weights to 13-wk-exercised rats. In fact, only 3 wk of exercise sufficed to prevent obesity for 10 wk after wheel removal. Terminally, the 6-wk-Ex/7-wk-Sed rats had a 55% increase in arcuate nucleus proopiomelanocortin mRNA expression vs. Sed rats, suggesting that this contributed to their sustained obesity resistance. Finally, when Sed rats were calorically restricted for 6 wk to weight match them to Ex rats (6 wk Rstr/7 wk Al), they increased their intake and body weight when fed ad libitum and, after 7 wk more, had higher leptin levels and adiposity than Sed rats. Thus, early-onset exercise may favorably alter, while early caloric restriction may unfavorably influence, the development of the hypothalamic pathways controlling energy homeostasis during brain development
Three weeks of early-onset exercise prolongs obesity resistance in DIO rats after exercise cessation
Recommended from our members
Role of FAT/CD36 in fatty acid sensing, energy, and glucose homeostasis regulation in DIO and DR rats
Hypothalamic fatty acid (FA) sensing neurons alter their activity utilizing the FA translocator/receptor, FAT/CD36. Depletion of ventromedial hypothalamus (VMH) CD36 with adeno-associated viral vector expressing CD36 shRNA (AAV CD36 shRNA) leads to redistribution of adipose stores and insulin resistance in outbred rats. This study assessed the requirement of VMH CD36-mediated FA sensing for the regulation of energy and glucose homeostasis in postnatal day 5 (P5) and P21 selectively bred diet-induced obese (DIO) and diet-resistant (DR) rats using VMH AAV CD36 shRNA injections. P5 CD36 depletion altered VMH neuronal FA sensing predominantly in DIO rats. After 10 wk on a 45% fat diet, DIO rats injected with VMH AAV CD36 shRNA at P21 ate more and gained more weight than DIO AAV controls, while DR AAV CD36 shRNA-injected rats gained less weight than DR AAV controls. VMH CD36 depletion increased inguinal fat pad weights and leptin levels in DIO and DR rats. Although DR AAV CD36 shRNA-injected rats became as obese as DIO AAV controls, only DIO control and CD36 depleted rats became insulin-resistant on a 45% fat diet. VMH CD36 depletion stunted linear growth in DIO and DR rats. DIO rats injected with AAV CD36 shRNA at P5 had increased fat mass, mostly due to a 45% increase in subcutaneous fat. They were also insulin-resistant with an associated 71% increase of liver triglycerides. These results demonstrate that VMH CD36-mediated FA sensing is a critical factor in the regulation of energy and glucose homeostasis and fat deposition in DIO and DR rats
Recommended from our members
Maternal obesity increases hypothalamic leptin receptor expression and sensitivity in juvenile obesity-prone rats
In rats selectively bred to develop diet-induced obesity (DIO) or to be diet-resistant (DR), DIO maternal obesity selectively enhances the development of obesity and insulin resistance in their adult offspring. We postulated that the interaction between genetic predisposition and factors in the maternal environment alter the development of hypothalamic peptide systems involved in energy homeostasis regulation. Maternal obesity in the current studies led to increased body and fat pad weights and higher leptin and insulin levels in postnatal day 16 offspring of both DIO and DR dams. However, by 6 wk of age, most of these intergroup differences disappeared and offspring of obese DIO dams had unexpected increases in arcuate nucleus leptin receptor mRNA, peripheral insulin sensitivity, diet- and leptin-induced brown adipose temperature increase and 24-h anorectic response compared with offspring of lean DIO, but not lean DR dams. On the other hand, while offspring of obese DIO dams did have the highest ventromedial nucleus melanocortin-4 receptor expression, their anorectic and brown adipose thermogenic responses to the melanocortin agonist, Melanotan II (MTII), did not differ from those of offspring of lean DR or DIO dams. Thus, during their rapid growth phase, juvenile offspring of obese DIO dams have alterations in their hypothalamic systems regulating energy homeostasis, which ameliorates their genetic and perinatally determined predisposition toward leptin resistance. Because they later go onto become more obese, it is possible that interventions during this time period might prevent the subsequent development of obesity
Recommended from our members
Altered hypothalamic leptin, insulin, and melanocortin binding associated with moderate-fat diet and predisposition to obesity
IL-6 ameliorates defective leptin sensitivity in DIO ventromedial hypothalamic nucleus neurons
Rats selectively bred to develop diet-induced obesity (DIO) have an early onset reduction in the sensitivity of their ventromedial hypothalamic nucleus (VMN) neurons to leptin as compared to diet-resistant (DR) rats. This reduced sensitivity includes decreased leptin receptor (Lepr-b) mRNA expression, leptin receptor binding, leptin-induced phosphorylation of STAT3 (pSTAT3) and impaired leptin excitation (LepE) of VMN neurons. When administered exogenously, the pancreatic peptide, amylin, acts synergistically to reduce food intake and body weight in obese, leptin resistant DIO rats by increasing VMN leptin signaling, likely by stimulation of microglia IL-6 which acts on its receptor to increase leptin-induced pSTAT3. Here we demonstrate that incubation of cultured VMN neurons of outbred rats with IL-6 increases their leptin sensitivity. Control, dissociated DIO VMN neurons express 66% less Lepr-b and 75% less Bardet Biedl Syndrome-6 (BBS6) mRNA and have reduced leptin-induced activation of LepE neurons compared to DR neurons. Incubation for 4 d with IL-6 increased DIO neuron Lepr-b expression by 77% and BBS6 by 290% and corrected their defective leptin activation of LepE neurons to DR levels. Since BBS6 enhances trafficking of Lepr-b to the cell membrane, the increases in Lepr-b and BBS6 expression appear to account for correction of the reduced leptin excitation of DIO LepE neurons to that of control DR rats. These data support prior findings suggesting that IL-6 mediates the leptin sensitizing effects of amylin on VMN neurons and that the inherent leptin resistance of DIO rats can be effectively reversed at a cellular level by IL-6