63 research outputs found

    Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East : vertical peak ground acceleration and spectral acceleration

    Get PDF
    This article presents equations for the estimation of vertical strong ground motions caused by shallow crustal earthquakes with magnitudes M w 5 and distance to the surface projection of the fault less than 100km. These equations were derived by weighted regression analysis, used to remove observed magnitude-dependent variance, on a set of 595 strong-motion records recorded in Europe and the Middle East. Coefficients are included to model the effect of local site effects and faulting mechanism on the observed ground motions. The equations include coefficients to model the observed magnitude-dependent decay rate. The main findings of this study are that: short-period ground motions from small and moderate magnitude earthquakes decay faster than the commonly assumed 1/r, the average effect of differing faulting mechanisms is similar to that observed for horizontal motions and is not large and corresponds to factors between 0.7 (normal and odd) and 1.4 (thrust) with respect to strike-slip motions and that the average long-period amplification caused by soft soil deposits is about 2.1 over those on rock sites

    Earthquakes, Existing Buildings and Seismic Design Codes in Turkey

    No full text

    An investigation of analysis of variance as a tool for exploring regional differences in strong ground motions

    No full text
    The statistical technique known as analysis of variance is applied to a large set of European strong-motion data to investigate whether strong ground motions show a regional dependence. This question is important when selecting strong-motion records for the derivation of ground motion prediction equations and also when choosing strong-motion records from one geographical region for design purposes in another. Five regions with much strong-motion data (the Caucasus region, central Italy, Friuli, Greece and south Iceland) are investigated here. For the magnitude and distance range where there are overlapping data from the five areas (2.50≤Ms≤5.50, 0≤d≤35 km) and consequently analysis of variance can be performed, there is little evidence for a regional dependence of ground motions. There is a lack of data from moderate and large magnitude earthquakes (Ms > 5.5) so analysis of variance cannot be performed there. Since there is uncertainty regarding scaling ground motions from small to large magnitudes whether ground motions from large earthquakes are significantly different in different parts of Europe is not known. Analysis of variance has the ability to complement other techniques for the assessment of regional dependence of ground motions
    corecore