2 research outputs found
Upregulated bovine tuberculosis microRNAs Trigger oncogenic pathways: An In silico perception
Background/Objective: Although microRNA (miRNA)-directed regulation of bovine tuberculosis (bTB) has already been reported, very little is known about the incited pathways and genes. We profiled bTB-upregulated miRNAs through an in silico methodology. Methods: The data of upregulated miRNAs in bTB versus healthy controls were collected and clustered into three groups by their tissue specificity as follows: G1 (mammary gland-specific): bta-miR-146a; G2 (peripheral blood mononuclear cell-specific): bta-miR-155; and G3 (alveolar macrophage-specific): bta-miR-146a, bta-miR-155, bta-miR-142-5p, bta-miR-423-3p, bta-miR-21-5p, bta-miR-27a-3p, bta-miR-99b, bta-miR-147, bta-miR-223, and bta-let-7i. The miRNA–mRNA interaction network was defined by TargetScan. The gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways of these transcripts were examined. Results: The results illustrate the induction of pathways in cancer, highly enriched, and unanimous to all three gene sets (G1, G2, and G3). Mitogen-activated protein kinase and PI3K-Akt signaling were specific to G2 and G3 with fibroblast growth factors formed the key factors. Conclusion: The inferred cancer cascades denote a probable modulation of innate immune response in an infectious state. These baseline pictures could lay the ground for further substantive studies