15 research outputs found

    Transforming acidic coiled-coil 3 and Aurora-A interact in human thyrocytes and their expression is deregulated in thyroid cancer tissues

    Get PDF
    Aurora-A kinase has recently been shown to be deregulated in thyroid cancer cells and tissues. Among the Aurora-A substrates identified, transforming acidic coiled-coil (TACC3), a member of the TACC family, plays an important role in cell cycle progression and alterations of its expression occur in different cancer tissues. In this study, we demonstrated the expression of the TACC3 gene in normal human thyroid cells (HTU5), and its modulation at both mRNA and protein levels during cell cycle. Its expression was found, with respect to HTU5 cells, unchanged in cells derived from a benign thyroid follicular tumor (HTU42), and significantly reduced in cell lines derived from follicular (FTC-133), papillary (B-CPAP), and anaplastic thyroid carcinomas (CAL-62 and 8305C). Moreover, in 16 differentiated thyroid cancer tissues, TACC3 mRNA levels were found, with respect to normal matched tissues, reduced by twofold in 56% of cases and increased by twofold in 44% of cases. In the same tissues, a correlation between the expression of the TACC3 and Aurora-A mRNAs was observed. TACC3 and Aurora-A interact in vivo in thyroid cells and both proteins localized onto the mitotic structure of thyroid cells. Finally, TACC3 localization on spindle microtubule was no more observed following the inhibition of Aurora kinase activity by VX-680. We propose that Aurora-A and TACC3 interaction is important to control the mitotic spindle organization required for proper chromosome segregation

    The Impact of Long-Term Exposure to Space Environment on Adult Mammalian Organisms: A Study on Mouse Thyroid and Testis

    Get PDF
    Hormonal changes in humans during spaceflight have been demonstrated but the underlying mechanisms are still unknown. To clarify this point thyroid and testis/epididymis, both regulated by anterior pituitary gland, have been analyzed on long-term space-exposed male C57BL/10 mice, either wild type or pleiotrophin transgenic, overexpressing osteoblast stimulating factor-1. Glands were submitted to morphological and functional analysis

    Thyrotropin regulation of membrane lipid fluidity in the FRTL-5 thyroid cell line. Its relationship to cell growth and functional activity.

    No full text
    The mitogenic effect of thyrotropin on functional rat thyroid cells of the line FRTL-5 is correlated with membrane lipid fluidity as evaluated by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene. Continued exposure of FRTL-5 cells to a medium lacking thyrotropin causes cessation of cell proliferation and a decrease in membrane lipid fluidity which reaches its minimum in approximately 8 days. The change in lipid fluidity is due to an absolute increase (greater than 2-fold) of membrane cholesterol, with an increased cholesterol/phospholipid ratio and an increased ratio of saturated to unsaturated fatty acids of the membrane phospholipids, contributed primarily by a nearly 4-fold increase in the ratio of saturated to unsaturated C16 fatty acids. It is also associated with a variation of the relative proportions of the major membrane phospholipids; thus, phosphatidylinositol and phosphatidylethanolamine decrease while phosphatidylcholine increases. Both membrane fluidity and lipid composition can be restored by thyrotropin to their original levels, i.e. levels measured under continuous exposure to the hormone. Complete reversal requires at least 48 h, i.e. approximately the same time required for resumption of growth when FRTL-5 cells, starved in thyrotropin, are re-exposed to the hormone. Changes in lipid composition and fluidity can be prevented or can be reversed if FRTL-5 cells are exposed to dibutyryl cAMP while being deprived of thyrotropin. Dibutyryl cAMP has only a modest direct effect on growth; however, this pretreatment eliminates the 48-h lag phase with respect to thyrotropin stimulation. It is proposed that the effects of thyrotropin on growth of FRTL-5 cells requires a modification of the molecular structure and the physical state of cell membranes, which can be mediated by cAMP, although cAMP is not sufficient by itself to promote growth

    Effect of Vitamin D in HN9.10e embryonic hippocampal cells and in hippocampus from MPTP-induced Parkinson\ue2\u80\u99s disease mouse model

    No full text
    It has long been proven that neurogenesis continues in the adult brains of mammals in the dentatus gyrus of the hippocampus due to the presence of neural stem cells. Although a large number of studies have been carried out to highlight the localization of vitamin D receptor in hippocampus, the expression of vitamin D receptor in neurogenic dentatus gyrus of hippocampus in Parkinson’s disease (PD) and the molecular mechanisms triggered by vitamin D underlying the production of differentiated neurons from embryonic cells remain unknown. Thus, we performed a preclinical in vivo study by inducing PD in mice with MPTP and showed a reduction of glial fibrillary acidic protein (GFAP) and vitamin D receptor in the dentatus gyrus of hippocampus. Then, we performed an in vitro study by inducing embryonic hippocampal cell differentiation with vitamin D. Interestingly, vitamin D stimulates the expression of its receptor. Vitamin D receptor is a transcription factor that probably is responsible for the upregulation of microtubule associated protein 2 and neurofilament heavy polypeptide genes. The latter increases heavy neurofilament protein expression, essential for neurofilament growth. Notably N-cadherin, implicated in activity for dendritic outgrowth, is upregulated by vitamin D
    corecore