505 research outputs found
Muon localization site in U(Pt,Pd)3
The angular and temperature (10-250 K) variation of the Knight shift of
single-crystalline U(Pt0.95Pd0.05)3 has been measured in transverse field
(B=0.6 T) mSR experiments. By analysing the temperature variation of the Knight
shift with a modified Curie-Weiss expression the muon localization site in this
hexagonal material is determined at (0,0,0).Comment: 12 pages (including 4 figures); postscript file; Proc. 8th Int. Conf.
on Muon Spin Rotation, Relaxation and Resonance (Aug.30-Sept.3, Les
Diablerets); 2nd version with minor correction
Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts
It is only now, with low-frequency radio telescopes, long exposures with
high-resolution X-ray satellites and gamma-ray telescopes, that we are
beginning to learn about the physics in the periphery of galaxy clusters. In
the coming years, Sunyaev-Zeldovich telescopes are going to deliver further
great insights into the plasma physics of these special regions in the
Universe. The last years have already shown tremendous progress with detections
of shocks, estimates of magnetic field strengths and constraints on the
particle acceleration efficiency. X-ray observations have revealed shock fronts
in cluster outskirts which have allowed inferences about the microphysical
structure of shocks fronts in such extreme environments. The best indications
for magnetic fields and relativistic particles in cluster outskirts come from
observations of so-called radio relics, which are megaparsec-sized regions of
radio emission from the edges of galaxy clusters. As these are difficult to
detect due to their low surface brightness, only few of these objects are
known. But they have provided unprecedented evidence for the acceleration of
relativistic particles at shock fronts and the existence of muG strength fields
as far out as the virial radius of clusters. In this review we summarise the
observational and theoretical state of our knowledge of magnetic fields,
relativistic particles and shocks in cluster outskirts.Comment: 34 pages, to be published in Space Science Review
Differential cross sections, charge production asymmetry, and spin-density matrix elements for D*(2010) produced in 500 GeV/c pi^- nucleon interactions
We report differential cross sections for the production of D*(2010) produced
in 500 GeV/c pi^- nucleon interactions from experiment E791 at Fermilab, as
functions of Feynman-x (x_F) and transverse momentum squared (p_T^2). We also
report the D* +/- charge asymmetry and spin-density matrix elements as
functions of these variables. Investigation of the spin-density matrix elements
shows no evidence of polarization. The average values of the spin alignment are
\eta= 0.01 +- 0.02 and -0.01 +- 0.02 for leading and non-leading particles,
respectively.Comment: LaTeX2e (elsart.cls). 13 pages, 6 figures (eps files). Submitted to
Physics Letters
Search for Rare and Forbidden Dilepton Decays of the D+, Ds, and D0 Charmed Mesons
We report the results of a search for flavor-changing neutral current,
lepton-flavor violating, and lepton-number violating decays of D+, Ds, and D0
mesons (and their antiparticles) into modes containing muons and electrons.
Using data from Fermilab charm hadroproduction experiment E791, we examine the
pi,l,l and K,l,l decay modes of D+ and Ds and the l+l- decay modes of D0. No
evidence for any of these decays is found. Therefore, we present
branching-fraction upper limits at 90% confidence level for the 24 decay modes
examined. Eight of these modes have no previously reported limits, and fourteen
are reported with significant improvements over previously published results.Comment: 12 pages, 3 figures, LaTeX, elsart.cls, epsf.sty, amsmath.sty
Submitted to Physics Letters
Measurement of the form-factor ratios for D+ --> K* l nu
The form factor ratios rv=V(0)/A1(0), r2=A2(0)/A1(0) and r3=A3(0)/A1(0) in
the decay D+ --> K* l nu, K* -->K-pi+ have been measured using data from charm
hadroproduction experiment E791 at Fermilab. From 3034 (595) signal
(background) events in the muon channel, we obtain rv=1.84+-0.11+-0.09,
r2=0.75+-0.08+-0.09 and, as a first measurement of r3, we find 0.04+-0.33
+-0.29. The values of the form factor ratios rv and r2 measured for the muon
channel are combined with the values of rv and r2 that we have measured in the
electron channel. The combined E791 results for the muon and electron channels
are rv=1.87+-0.08+-0.07 and r2=0.73+-0.06+-0.08.Comment: 9 pages + 3 figures ; submitted to PL
High Energy Processes in Pulsar Wind Nebulae
Young pulsars produce relativistic winds which interact with matter ejected
during the supernova explosion and the surrounding interstellar gas. Particles
are accelerated to very high energies somewhere in the pulsar winds or at the
shocks produced in collisions of the winds with the surrounding medium. As a
result of interactions of relativistic leptons with the magnetic field and low
energy radiation (of synchrotron origin, thermal, or microwave background), the
non-thermal radiation is produced with the lowest possible energies up to
100 TeV. The high energy (TeV) gamma-ray emission has been originally
observed from the Crab Nebula and recently from several other objects. Recent
observations by the HESS Cherenkov telescopes allow to study for the first time
morphology of the sources of high energy emission, showing unexpected spectral
features. They might be also interpreted as due to acceleration of hadrons.
However, theory of particle acceleration in the PWNe and models for production
of radiation are still at their early stage of development since it becomes
clear that realistic modeling of these objects should include their time
evolution and three-dimensional geometry. In this paper we concentrate on the
attempts to create a model for the high energy processes inside the PWNe which
includes existence not only relativistic leptons but also hadrons inside the
nebula. Such model should also take into account evolution of the nebula in
time. Possible high energy expectations based on such a model are discussed in
the context of new observations.Comment: 9 pages, 1 figure, Proc. Multimessenger approach to high energy
gamma-ray source
Recent Advances in Understanding Particle Acceleration Processes in Solar Flares
We review basic theoretical concepts in particle acceleration, with
particular emphasis on processes likely to occur in regions of magnetic
reconnection. Several new developments are discussed, including detailed
studies of reconnection in three-dimensional magnetic field configurations
(e.g., current sheets, collapsing traps, separatrix regions) and stochastic
acceleration in a turbulent environment. Fluid, test-particle, and
particle-in-cell approaches are used and results compared. While these studies
show considerable promise in accounting for the various observational
manifestations of solar flares, they are limited by a number of factors, mostly
relating to available computational power. Not the least of these issues is the
need to explicitly incorporate the electrodynamic feedback of the accelerated
particles themselves on the environment in which they are accelerated. A brief
prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares,
inspired by RHESSI observations. The individual articles are to appear in
Space Science Reviews (2011
Measurement of the branching fraction
The branching fraction is measured in a data sample
corresponding to 0.41 of integrated luminosity collected with the LHCb
detector at the LHC. This channel is sensitive to the penguin contributions
affecting the sin2 measurement from The
time-integrated branching fraction is measured to be . This is the most precise measurement to
date
Model-independent search for CP violation in D0âKâK+ÏâÏ+ and D0âÏâÏ+Ï+Ïâ decays
A search for CP violation in the phase-space structures of D0 and View the MathML source decays to the final states KâK+ÏâÏ+ and ÏâÏ+Ï+Ïâ is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fbâ1 collected in 2011 by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. For the KâK+ÏâÏ+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the ÏâÏ+Ï+Ïâ final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity
- âŠ