22 research outputs found
Modeling, Simulation, and Fabrication of a Fully Integrated, Acid-stable, Scalable Solar-Driven Water-Splitting System
A fully integrated solar-driven water-splitting system comprised of WO3/FTO/p^(+)n Si as the photoanode, Pt/TiO_2/Ti/n^(+)p Si as the photocathode, and Nafion as the membrane separator, was simulated, assembled, operated in 1.0âM HClO_4, and evaluated for performance and safety characteristics under dual side illumination. A multi-physics model that accounted for the performance of the photoabsorbers and electrocatalysts, ion transport in the solution electrolyte, and gaseous product crossover was first used to define the optimal geometric design space for the system. The photoelectrodes and the membrane separators were then interconnected in a louvered design system configuration, for which the light-absorbing area and the solution-transport pathways were simultaneously optimized. The performance of the photocathode and the photoanode were separately evaluated in a traditional three-electrode photoelectrochemical cell configuration. The photocathode and photoanode were then assembled back-to-back in a tandem configuration to provide sufficient photovoltage to sustain solar-driven unassisted water-splitting. The currentâvoltage characteristics of the photoelectrodes showed that the low photocurrent density of the photoanode limited the overall solar-to-hydrogen (STH) conversion efficiency due to the large band gap of WO_3. A hydrogen-production rate of 0.17â
mLâhr^â1 and a STH conversion efficiency of 0.24â% was observed in a full cell configuration for >20â
h with minimal product crossover in the fully operational, intrinsically safe, solar-driven water-splitting system. The solar-to-hydrogen conversion efficiency, ηS_TH, calculated using the multiphysics numerical simulation was in excellent agreement with the experimental behavior of the system. The value of ηSTH was entirely limited by the performance of the photoelectrochemical assemblies employed in this study. The louvered design provides a robust platform for implementation of various types of photoelectrochemical assemblies, and can provide an approach to significantly higher solar conversion efficiencies as new and improved materials become available
Electrochemical surface science twenty years later: Expeditions into the electrocatalysis of reactions at the core of artificial photosynthesis
Surface science research fixated on phenomena and processes that transpire at the electrode-electrolyte interface has been pursued in the past. A considerable proportion of the earlier work was on materials and reactions pertinent to the operation of small-molecule fuel cells. The experimental approach integrated a handful of surface-sensitive physicalâanalytical methods with traditional electrochemical techniques, all harbored in a single environment-controlled electrochemistry-surface science apparatus (EC-SSA); the catalyst samples were typically precious noble metals constituted of well-defined single-crystal surfaces. More recently, attention has been diverted from fuel-to-energy generation to its converse, (solar) energy-to-fuel transformation; e.g., instead of water synthesis (from hydrogen and oxygen) in fuel cells, water decomposition (to hydrogen and oxygen) in artificial photosynthesis. The rigorous surface-science protocols remain unchanged but the experimental capabilities have been expanded by the addition of several characterization techniques, either as EC-SSA components or as stand-alone instruments. The present manuscript describes results selected from on-going studies of earth-abundant electrocatalysts for the reactions that underpin artificial photosynthesis: nickel-molybdenum alloys for the hydrogen evolution reaction, calcium birnessite as a heterogeneous analogue for the oxygen-evolving complex in natural photosynthesis, and single-crystalline copper in relation to the carbon dioxide reduction reaction