166 research outputs found

    Molecular testing of sarcomas

    Get PDF
    Connective tissue tumours, particularly sarcomas, are rare and present as a variety of histological subtypes with diverse management protocols and have varied prognoses. Many of these tumours have specific cancer driver genetic alterations that can be leveraged for diagnostic purposes. For practical purposes, these tumours can be categorised as harbouring genetic alterations including chromosomal rearrangements, gene amplifications, single nucleotide substitutions, and complex genetic abnormalities. Herein we discuss different tumour subtypes with their associated genetic abnormalities that may be used in clinical practice, when interpreted in the context of the relevant clinical, histological and radiological information. The benefits of large scale sequencing studies of sarcoma are leading to new insights into sarcoma development and are providing a biological rationale for personalised medicine. Genomic profiling and other “omic” studies will likely play a fundamental part in the development of new diagnostic and predictive biomarkers in the near future

    Frequent alterations in p16/CDKN2A identified by immunohistochemistry and FISH in chordoma

    Get PDF
    The expression of p16/CDKN2A, the second most commonly inactivated tumour suppressor gene in cancer, is lost in the majority of chordomas. However, the mechanism(s) leading to its inactivation and contribution to disease progression have only been partially addressed using small patient cohorts. We studied 384 chordoma samples from 320 patients by immunohistochemistry and found that p16 protein was lost in 53% of chordomas and was heterogeneously expressed in these tumours. To determine if CDKN2A copy number loss could explain the absence of p16 protein expression we performed fluorescence in situ hybridisation (FISH) for CDKN2A on consecutive tissue sections. CDKN2A copy number status was altered in 168 of 274 (61%) of samples and copy number loss was the most frequent alteration acquired during clinical disease progression. CDKN2A homozygous deletion was always associated with p16 protein loss but only accounted for 33% of the p16‐negative cases. The remaining immunonegative cases were associated with disomy (27%), monosomy (12%), heterozygous loss (20%) and copy number gain (7%) of CDKN2A, supporting the hypothesis that loss of protein expression might be achieved via epigenetic or post‐transcriptional regulatory mechanisms. We identified that mRNA levels were comparable in tumours with and without p16 protein expression, but other events including DNA promoter hypermethylation, copy number neutral loss of heterozygosity and expression of candidate microRNAs previously implicated in the regulation of CDKN2A expression were not identified to explain the protein loss. The data argue that p16 loss in chordoma is commonly caused by a post‐transcriptional regulatory mechanism that is yet to be defined

    Digital PCR analysis of circulating tumor DNA: a biomarker for chondrosarcoma diagnosis, prognostication, and residual disease detection

    Get PDF
    Conventional chondrosarcoma is the most common primary bone tumor in adults. Prognosis corresponds with tumor grade but remains variable, especially for individuals with grade (G) II disease. There are currently no biomarkers available for monitoring or prognostication of chondrosarcoma. Circulating tumor DNA (ctDNA) has recently emerged as a promising biomarker for a broad range of tumor types. To date, little has been done to study the presence of ctDNA and its potential utility in the management of sarcomas, including chondrosarcoma. In this study, we have assessed ctDNA levels in a cohort of 71 patients, 32 with sarcoma, including 29 individuals with central chondrosarcoma (CS) and 39 with locally aggressive and benign bone and soft tissue tumors, using digital PCR. In patients with CS, ctDNA was detected in pretreatment samples in 14/29 patients, which showed clear correlation with tumor grade as demonstrated by the detection of ctDNA in all patients with GIII and dedifferentiated disease (n = 6) and in 8/17 patients with GII disease, but never associated with GI CS. Notably detection of ctDNA preoperatively in GII disease was associated with a poor outcome. A total of 14 patients with CS had ctDNA levels assessed at multiple time points and in most patients there was a clear reduction following surgical removal. This research lays the foundation for larger studies to assess the utility of ctDNA for chondrosarcoma diagnosis, prognostication, early detection of residual disease and monitoring disease progression

    FOS Expression in Osteoid Osteoma and Osteoblastoma: A Valuable Ancillary Diagnostic Tool

    Get PDF
    Osteoblastoma and osteoid osteoma together are the most frequent benign bone-forming tumor, arbitrarily separated by size. In some instances, it can be difficult to differentiate osteoblastoma from osteosarcoma. Following our recent description of FOS gene rearrangement in these tumors, the aim of this study is to evaluate the value of immunohistochemistry in osteoid osteoma, osteoblastoma, and osteosarcoma for diagnostic purposes. A total of 337 cases were tested with antibodies against c-FOS: 84 osteoblastomas, 33 osteoid osteomas, 215 osteosarcomas, and 5 samples of reactive new bone formation. In all, 83% of osteoblastomas and 73% of osteoid osteoma showed significant expression of c-FOS in the osteoblastic tumor cell component. Of the osteosarcomas, 14% showed c-FOS expression, usually focal, and in areas with severe morphologic atypia which were unequivocally malignant: 4% showed more conspicuous expression, but these were negative for FOS gene rearrangement. We conclude that c-FOS immunoreactivity is present in the vast majority of osteoblastoma/osteoid osteoma, whereas its expression is usually focal or patchy, in no more than 14% of osteosarcoma biopsies. Therefore, any bone-forming tumor cases with worrying histologic features would benefit from fluorescence in situ hybridization analysis for FOS gene rearrangement. Our findings highlight the importance of undertaking a thorough assessment of expression patterns of antibodies in the light of morphologic, clinical, and radiologic features

    EGFR inhibitors identified as a potential treatment for chordoma in a focused compound screen.

    Get PDF
    Chordoma is a rare malignant bone tumour with a poor prognosis and limited therapeutic options. We undertook a focused compound screen (FCS) against 1097 compounds on three well-characterized chordoma cell lines; 154 compounds were selected from the single concentration screen (1 µm), based on their growth-inhibitory effect. Their half-maximal effective concentration (EC50 ) values were determined in chordoma cells and normal fibroblasts. Twenty-seven of these compounds displayed chordoma selective cell kill and 21/27 (78%) were found to be EGFR/ERBB family inhibitors. EGFR inhibitors in clinical development were then studied on an extended cell line panel of seven chordoma cell lines, four of which were sensitive to EGFR inhibition. Sapitinib (AstraZeneca) emerged as the lead compound, followed by gefitinib (AstraZeneca) and erlotinib (Roche/Genentech). The compounds were shown to induce apoptosis in the sensitive cell lines and suppressed phospho-EGFR and its downstream pathways in a dose-dependent manner. Analysis of substituent patterns suggested that EGFR-inhibitors with small aniline substituents in the 4-position of the quinazoline ring were more effective than inhibitors with large substituents in that position. Sapitinib showed significantly reduced tumour growth in two xenograft mouse models (U-CH1 xenograft and a patient-derived xenograft, SF8894). One of the resistant cell lines (U-CH2) was shown to express high levels of phospho-MET, a known bypass signalling pathway to EGFR. Neither amplifications (EGFR, ERBB2, MET) nor mutations in EGFR, ERBB2, ERBB4, PIK3CA, BRAF, NRAS, KRAS, PTEN, MET or other cancer gene hotspots were detected in the cell lines. Our findings are consistent with the reported (p-)EGFR expression in the majority of clinical samples, and provide evidence for exploring the efficacy of EGFR inhibitors in the treatment of patients with chordoma and studying possible resistance mechanisms to these compounds in vitro and in vivo. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland

    DNA methylation-based profiling of bone and soft tissue tumours: a validation study of the 'DKFZ Sarcoma Classifier'

    Get PDF
    Diagnosing bone and soft tissue neoplasms remains challenging because of the large number of subtypes, many of which lack diagnostic biomarkers. DNA methylation profiles have proven to be a reliable basis for the classification of brain tumours and, following this success, a DNA methylation-based sarcoma classification tool from the Deutsches Krebsforschungszentrum (DKFZ) in Heidelberg has been developed. In this study, we assessed the performance of their classifier on DNA methylation profiles of an independent data set of 986 bone and soft tissue tumours and controls. We found that the 'DKFZ Sarcoma Classifier' was able to produce a diagnostic prediction for 55% of the 986 samples, with 83% of these predictions concordant with the histological diagnosis. On limiting the validation to the 820 cases with histological diagnoses for which the DKFZ Classifier was trained, 61% of cases received a prediction, and the histological diagnosis was concordant with the predicted methylation class in 88% of these cases, findings comparable to those reported in the DKFZ Classifier paper. The classifier performed best when diagnosing mesenchymal chondrosarcomas (CHSs, 88% sensitivity), chordomas (85% sensitivity), and fibrous dysplasia (83% sensitivity). Amongst the subtypes least often classified correctly were clear cell CHSs (14% sensitivity), malignant peripheral nerve sheath tumours (27% sensitivity), and pleomorphic liposarcomas (29% sensitivity). The classifier predictions resulted in revision of the histological diagnosis in six of our cases. We observed that, although a higher tumour purity resulted in a greater likelihood of a prediction being made, it did not correlate with classifier accuracy. Our results show that the DKFZ Classifier represents a powerful research tool for exploring the pathogenesis of sarcoma; with refinement, it has the potential to be a valuable diagnostic tool

    Synovial chondromatosis and soft tissue chondroma: extraosseous cartilaginous tumor defined by FN1 gene rearrangement

    Get PDF
    A fusion between fibronectin 1 (FN1) and activin receptor 2A (ACVR2A) has been reported previously in isolated cases of the synovial chondromatosis. To analyze further and validate the findings, we performed FISH and demonstrated recurrent FN1-ACVR2A rearrangements in synovial chondromatosis (57%), and chondrosarcoma secondary to synovial chondromatosis (75%), showing that FN1 and/or AVCR2A gene rearrangements do not distinguish between benign and malignant synovial chondromatosis. RNA sequencing revealed the presence of the FN1-ACVR2A fusion in several cases that were negative by FISH suggesting that the true prevalence of this fusion is potentially higher than 57%. In soft tissue chondromas, FN1 alterations were detected by FISH in 50% of cases but no ACVR2A alterations were identified. RNA sequencing identified a fusion involving FN1 and fibroblast growth factor receptor 2 (FGFR2) in the case of soft tissue chondroma and FISH confirmed recurrent involvement of both FGFR1 and FGFR2. These fusions were present in a subset of soft tissue chondromas characterized by grungy calcification, a feature reminiscent of phosphaturic mesenchymal tumor. However, unlike the latter, fibroblast growth factor 23 (FGF23) mRNA expression was not elevated in soft tissue chondromas harboring the FN1-FGFR1 fusion. The mutual exclusivity of ACVR2A rearrangements observed in synovial chondromatosis and FGFR1/2 in soft tissue chondromas suggests these represent separate entities. There have been no reports of malignant soft tissue chondromas, therefore differentiating these lesions will potentially alter clinical management by allowing soft tissue chondromas to be managed more conservatively

    Mental health consumer and caregiver perceptions of stigma in Australian community pharmacies

    Get PDF
    Background: The stigma of mental illness can be a barrier to effective medication management in the community pharmacy setting. This article explored mental health consumers’ or caregivers’ experiences of stigma in Australian community pharmacies. Materials: Semi-structured interviews and focus groups were conducted with a purposive sample of consumers or caregivers (n = 74). Interview transcripts were analysed using a general inductive approach. Discussion: Stigma presented a barrier to effective mental health management. Self-stigma impeded consumers’ community pharmacy engagement. Positive relationships with knowledgeable staff are fundamental to reducing stigma. Conclusions: Findings provide insight into the stigma of mental illness in community pharmacies

    Fibroblastic growth factor receptor 1 amplification in osteosarcoma is associated with poor response to neo-adjuvant chemotherapy.

    Get PDF
    Osteosarcoma, the most common primary bone sarcoma, is a genetically complex disease with no widely accepted biomarker to allow stratification of patients for treatment. After a recent report of one osteosarcoma cell line and one tumor exhibiting fibroblastic growth factor receptor 1 (FGFR1) gene amplification, the aim of this work was to assess the frequency of FGFR1 amplification in a larger cohort of osteosarcoma and to determine if this biomarker could be used for stratification of patients for treatment. About 352 osteosarcoma samples from 288 patients were analyzed for FGFR1 amplification by interphase fluorescence in situ hybridization. FGFR1 amplification was detected in 18.5% of patients whose tumors revealed a poor response to chemotherapy, and no patients whose tumors responded well to therapy harbored this genetic alteration. FGFR1 amplification is present disproportionately in the rarer histological variants of osteosarcoma. This study provides a rationale for inclusion of patients with osteosarcoma in clinical trials using FGFR kinase inhibitors
    corecore