4 research outputs found

    Relativistic Effects in the Electromagnetic Current at GeV Energies

    Get PDF
    We employ a recent approach to the non-relativistic reduction of the electromagnetic current operator in calculations of electronuclear reactions. In contrast to the traditional scheme, where approximations are made for the transferred momentum, transferred energy and initial momentum of the struck nucleon in obtaining an on-shell inspired form for the current, we treat the problem exactly for the transferred energy and transferred momentum. We calculate response functions for the reaction 2H(e,ep)n^2H(e,e'p)n at CEBAF (TJNAF) energies and find large relativistic corrections. We also show that in Plane Wave Impulse Approximation, it is always possible to use the full operator, and we present a comparison of such a limiting case with the results incorporating relativistic effects to the first order in the initial momentum of the struck nucleon.Comment: 31 pages, 8 figures, Revte

    Ground state correlations and mean-field in 16^{16}O: Part II

    Full text link
    We continue the investigations of the 16^{16}O ground state using the coupled-cluster expansion [exp(S)\exp({\bf S})] method with realistic nuclear interaction. In this stage of the project, we take into account the three nucleon interaction, and examine in some detail the definition of the internal Hamiltonian, thus trying to correct for the center-of-mass motion. We show that this may result in a better separation of the internal and center-of-mass degrees of freedom in the many-body nuclear wave function. The resulting ground state wave function is used to calculate the "theoretical" charge form factor and charge density. Using the "theoretical" charge density, we generate the charge form factor in the DWBA picture, which is then compared with the available experimental data. The longitudinal response function in inclusive electron scattering for 16^{16}O is also computed.Comment: 9 pages, 7 figure

    Microscopic calculation of the inclusive electron scattering structure function in O-16

    Full text link
    We calculate the charge form factor and the longitudinal structure function for 16^{16}O and compare with the available experimental data, up to a momentum transfer of 4 fm1^{-1}. The ground state correlations are generated using the coupled cluster [exp(S}] method, together with the realistic v-18 NN interaction and the Urbana IX three-nucleon interaction. Center-of-mass corrections are dealt with by adding a center-of-mass Hamiltonian to the usual internal Hamiltonian, and by means of a many-body expansion for the computation of the observables measured in the center-of-mass system
    corecore