6 research outputs found

    Carbon Dioxide Capture through Physical and Chemical Adsorption Using Porous Carbon Materials: A Review

    No full text
    Due to rapid industrialization and urban development across the globe, the emission of carbon dioxide (CO2) has been significantly increased, resulting in adverse effects on the climate and ecosystems. In this regard, carbon capture and storage (CCS) is considered to be a promising technology in reducing atmospheric CO2 concentration. Among the CO2 capture technologies, adsorption has grabbed significant attention owing to its advantageous characteristics discovered in recent years. Porous carbon-based materials have emerged as one of the most versatile CO2 adsorbents. Numerous research activities have been conducted by synthesizing carbon-based adsorbents using different precursors to investigate their performances towards CCS. Additionally, amine-functionalized carbon-based adsorbents have exhibited remarkable potential for selective capturing of CO2 in the presence of other gases and humidity conditions. The present review describes the CO2 emission sources, health, and environmental impacts of CO2 towards the human beings, options for CCS, and different CO2 separation technologies. Apart from the above, different synthesis routes of carbon-based adsorbents using various precursors have been elucidated. The CO2 adsorption selectivity, capacity, and reusability of the current and applied carbon materials have also been summarized. Furthermore, the critical factors controlling the adsorption performance (e.g., the effect of textural and functional properties) are comprehensively discussed. Finally, the current challenges and future research directions have also been summarized

    Dynamically recommending repositories for health data : a machine learning model

    No full text
    Recently, a wide range of digital health record repositories has emerged. These include Electronic Health record managed by the government, Electronic Medical Record (EMR) managed by healthcare providers, Personal Health Record (PHR) managed directly by the patient and new Blockchain-based systems mainly managed by technologies. Health record repositories differ from one another on the level of security, privacy, and quality of services (QoS) they provide. Health data stored in these repositories also varies from patient to patient in sensitivity, and significance depending on medical, personal preference, and other factors. Decisions regarding which digital record repository is most appropriate for the storage of each data item at every point in time are complex and nuanced. The challenges are exacerbated with health data continuously streamed from wearable sensors. In this paper, we propose a recommendation model for health data storage that can accommodate patient preferences and make storage decisions rapidly, in real-time, even with streamed data. The model maps health data to be stored in the repositories. The mapping between health data features and characteristics of each repository is learned using a machine learning-based classifier mediated through clinical rules. Evaluation results demonstrate the model's feasibility. © 2020 ACM.E

    Compatibilization of Starch/Synthetic Biodegradable Polymer Blends for Packaging Applications: A Review

    No full text
    The health and environmental concerns of the usage of non-biodegradable plastics have driven efforts to explore replacing them with renewable polymers. Although starch is a vital renewable polymer, poor water resistivity and thermo-mechanical properties have limited its applications. Recently, starch/synthetic biodegradable polymer blends have captured greater attention to replace inert plastic materials; the question of ‘immiscibility’ arises during the blend preparation due to the mixing of hydrophilic starch with hydrophobic polymers. The immiscibility issue between starch and synthetic polymers impacts the water absorption, thermo-mechanical properties, and chemical stability demanded by various engineering applications. Numerous studies have been carried out to eliminate the immiscibility issues of the different components in the polymer blends while enhancing the thermo-mechanical properties. Incorporating compatibilizers into the blend mixtures has significantly reduced the particle sizes of the dispersed phase while improving the interfacial adhesion between the starch and synthetic biodegradable polymer, leading to fine and homogeneous structures. Thus, Significant improvements in thermo-mechanical and barrier properties and water resistance can be observed in the compatibilized blends. This review provides an extensive discussion on the compatibilization processes of starch and petroleum-based polymer blends

    Development of Starch-Based Materials Using Current Modification Techniques and Their Applications: A Review

    No full text
    Starch is one of the most common biodegradable polymers found in nature, and it is widely utilized in the food and beverage, bioplastic industry, paper industry, textile, and biofuel industries. Starch has received significant attention due to its environmental benignity, easy fabrication, relative abundance, non-toxicity, and biodegradability. However, native starch cannot be directly used due to its poor thermo-mechanical properties and higher water absorptivity. Therefore, native starch needs to be modified before its use. Major starch modification techniques include genetic, enzymatic, physical, and chemical. Among those, chemical modification techniques are widely employed in industries. This review presents comprehensive coverage of chemical starch modification techniques and genetic, enzymatic, and physical methods developed over the past few years. In addition, the current applications of chemically modified starch in the fields of packaging, adhesives, pharmaceuticals, agriculture, superabsorbent and wastewater treatment have also been discussed
    corecore