12 research outputs found

    Host specificity of sheep and cattle nematodes in São Paulo state, Brazil

    No full text
    The trial was carried out to investigate parasite host specificity and to analyse the dynamics of infection with nematodes parasitizing sheep and catt:le raised together or separately in São Paulo state, Brazil, and, also to clarify doubts about the systematics of species of the genus Haemonchus on the basis of cytological and morphological studies. Ten steers and 32 ewes were randomly assigned to three paddocks (P), as follows: P1, 5 steers; P2, 5 steers and 16 ewes; and P3, 16 ewes. The animals remained on these paddocks in continuous grazing throughout the trial (1-yr period). Faecal exams and larvae counting on pasture were performed fortnightly. Once a month two tracer lambs were placed in each paddock, while two tracer calves were also placed, but only in the eighth month of the trial. All these animals were slaughtered for worm identification and counting. At the end of the trial, one steer and one ewe from P2, which showed high faecal egg counts, were also slaughtered for the same purpose. Nematodes identified cytogenetically as H. placei presented spicule hooks longer than those identified as H. contortus. The following distribution of parasites in cattle and sheep was observed: Bunostomum phlebotomum, H. similis, Mammomonogamus laryngeus strongly adapted to cattle, H. placei and Cooperia punctata more adapted to cattle than to sheep, Trichostrongylus axel and C. spatulata apparently more adapted to cattle, T. colubriformis strongly adapted to sheep, H. contortus more adapted to sheep than to cattle and C. curticei apparently more adapted to sheep. Cross-infection was shown to occur involving some species, however, with time the animals apparently eliminate the species that are not well adapted to them. Therefore, grazing management systems using cattle and sheep appear to be promising for worm control in southeastern Brazil. (C) 1997 Elsevier B.V. B.V

    Syntenic assignment of CD3G to bovine chromosome 15

    No full text

    Dopamine receptor D2 maps to bovine chromosome 15

    No full text

    KRN1 maps to bovine chromosome 29

    No full text

    RH maps of bovine chromosomes 15 and 29: conservation of human chromosomes 11 and 5

    No full text
    Comparative mapping data on evolutionary conserved coding sequences and synteny maps between human and cattle are insufficient to define the extent and distribution of conserved segments between these two species, because the order of loci is often rearranged. A 5000-rad cattle whole-genome radiation hybrid (WG-RH) panel was constructed to provide high-resolution comparative maps and also to integrate linkage maps of microsatellites with evolutionary conserved genes and transcripts in a single ordered map. We used the WG-RH panel to construct radiation hybrid maps of bovine Chromosomes (Chrs) 15 and 29 (BTA15 and BTA29), integrating microsatellites from published linkage maps with selected genes. The comprehensive map of BTA15 consists of 24 markers. 13 of which were placed in the framework map. Eleven molecular markers compose the comprehensive map of BTA29. seven of which were placed in the framework map. We identified the homologous regions between bovine Chr 15 (BTA15) and human Chrs 5 and 11 (HSA5 and HSA11), as well as between BTA29 and HSA11, the present study demonstrates that WG-RH mapping is an efficient method for integrating multiple genetic maps into one map and for incorporating monomorphic Type I loci into ordered maps for comparison between species

    Twelve loci from HSA10, HSA11 and HSA20 were comparatively FISH-mapped on river buffalo and sheep chromosomes

    No full text
    Ten type I loci from HSA 10 (IL2RA and VIM), HSA11 (HBB and FSHB) and HSA20 (THBD, AVP/OXT, GNAS1, HCK and TOP1) and two domestic cattle type II loci (CSSM30 and BL42) were FISH mapped to R-banded river buffalo (BBU) and sheep (OAR) chromosomes. IL2RA (HSA 10) maps on BBU 14q13 and OAR13q13, VIM (HSA 10) maps on BBU14q15 and OAR13q15, HBB (HSA11) maps on BBU16q25 and OAR15q23, FSHB (HSA11) maps on BBU16q28 and OAR15q26. THBD (HSA20) maps on BBU 14q15 and OAR13q15 while AVP/OXT. GNAS1, HCK, and TOP I (HSA20) as well as CSSM30 and BL42 map on the same large band of BBU 14q22 and OAR13q22. All loci were mapped on the same homologous chromosomes and chromosome bands of the two species, and these results agree with those earlier reported in cattle homologous chromosomes 15 and 13. respectively, confirming the high degree of both banding and physical map similarities among the bovid species. Indirect comparisons between physical maps achieved on bovid chromosomes and those reported on HSA10, HSA11 and HSA20 were performed. Copyright (C) 2001 S. Karger AG, Basel
    corecore