8,898 research outputs found

    Comment on: Kinetic Roughening in Slow Combustion of Paper

    Full text link
    We comment on a recent Letter by Maunuksela et al. [Phys. Rev. Lett. 79, 1515 (1997)].Comment: 1 page, 1 figure, http://polymer.bu.edu/~hmakse/Home.htm

    Ising Model on Edge-Dual of Random Networks

    Full text link
    We consider Ising model on edge-dual of uncorrelated random networks with arbitrary degree distribution. These networks have a finite clustering in the thermodynamic limit. High and low temperature expansions of Ising model on the edge-dual of random networks are derived. A detailed comparison of the critical behavior of Ising model on scale free random networks and their edge-dual is presented.Comment: 23 pages, 4 figures, 1 tabl

    Dynamics of Surface Roughening with Quenched Disorder

    Full text link
    We study the dynamical exponent zz for the directed percolation depinning (DPD) class of models for surface roughening in the presence of quenched disorder. We argue that zz for (d+1)(d+1) dimensions is equal to the exponent dmind_{\rm min} characterizing the shortest path between two sites in an isotropic percolation cluster in dd dimensions. To test the argument, we perform simulations and calculate zz for DPD, and dmind_{\rm min} for percolation, from d=1d = 1 to d=6d = 6.Comment: RevTex manuscript 3 pages + 6 figures (obtained upon request via email [email protected]

    Directed Surfaces in Disordered Media

    Full text link
    The critical exponents for a class of one-dimensional models of interface depinning in disordered media can be calculated through a mapping onto directed percolation (DP). In higher dimensions these models give rise to directed surfaces, which do not belong to the directed percolation universality class. We formulate a scaling theory of directed surfaces, and calculate critical exponents numerically, using a cellular automaton that locates the directed surfaces without making reference to the dynamics of the underlying interface growth models.Comment: 4 pages, REVTEX, 2 Postscript figures avaliable from [email protected]

    Random Networks with Tunable Degree Distribution and Clustering

    Full text link
    We present an algorithm for generating random networks with arbitrary degree distribution and Clustering (frequency of triadic closure). We use this algorithm to generate networks with exponential, power law, and poisson degree distributions with variable levels of clustering. Such networks may be used as models of social networks and as a testable null hypothesis about network structure. Finally, we explore the effects of clustering on the point of the phase transition where a giant component forms in a random network, and on the size of the giant component. Some analysis of these effects is presented.Comment: 9 pages, 13 figures corrected typos, added two references, reorganized reference

    Driven interfaces in disordered media: determination of universality classes from experimental data

    Full text link
    While there have been important theoretical advances in understanding the universality classes of interfaces moving in porous media, the developed tools cannot be directly applied to experiments. Here we introduce a method that can identify the universality class from snapshots of the interface profile. We test the method on discrete models whose universality class is well known, and use it to identify the universality class of interfaces obtained in experiments on fluid flow in porous media.Comment: 4 pages, 5 figure

    Higher-Derivative Two-Dimensional Massive Fermion Theories

    Get PDF
    We consider the canonical quantization of a generalized two-dimensional massive fermion theory containing higher odd-order derivatives. The requirements of Lorentz invariance, hermiticity of the Hamiltonian and absence of tachyon excitations suffice to fix the mass term, which contains a derivative coupling. We show that the basic quantum excitations of a higher-derivative theory of order 2N+1 consist of a physical usual massive fermion, quantized with positive metric, plus 2N unphysical massless fermions, quantized with opposite metrics. The positive metric Hilbert subspace, which is isomorphic to the space of states of a massive free fermion theory, is selected by a subsidiary-like condition. Employing the standard bosonization scheme, the equivalent boson theory is derived. The results obtained are used as a guideline to discuss the solution of a theory including a current-current interaction.Comment: 23 pages, Late

    Micro-bias and macro-performance

    Full text link
    We use agent-based modeling to investigate the effect of conservatism and partisanship on the efficiency with which large populations solve the density classification task--a paradigmatic problem for information aggregation and consensus building. We find that conservative agents enhance the populations' ability to efficiently solve the density classification task despite large levels of noise in the system. In contrast, we find that the presence of even a small fraction of partisans holding the minority position will result in deadlock or a consensus on an incorrect answer. Our results provide a possible explanation for the emergence of conservatism and suggest that even low levels of partisanship can lead to significant social costs.Comment: 11 pages, 5 figure

    On fermionic tilde conjugation rules and thermal bosonization. Hot and cold thermofields

    Full text link
    A generalization of Ojima tilde conjugation rules is suggested, which reveals the coherent state properties of thermal vacuum state and is useful for the thermofield bosonization. The notion of hot and cold thermofields is introduced to distinguish different thermofield representations giving the correct normal form of thermofield solution for finite temperature Thirring model with correct renormalization and anticommutation properties.Comment: 13 page

    Attractive Casimir effect in an infrared modified gluon bag model

    Full text link
    In this work, we are motivated by previous attempts to derive the vacuum contribution to the bag energy in terms of familiar Casimir energy calculations for spherical geometries. A simple infrared modified model is introduced which allows studying the effects of the analytic structure as well as the geometry in a clear manner. In this context, we show that if a class of infrared vanishing effective gluon propagators is considered, then the renormalized vacuum energy for a spherical bag is attractive, as required by the bag model to adjust hadron spectroscopy.Comment: 7 pages. 1 figure. Accepted for publication in Physical Review D. Revised version with improved analysis and presentation, references adde
    • …
    corecore