6 research outputs found
Investigation of thermal effects of radiofrequency ablation mediated with iron oxide nanoparticles dispersed in agarose and chitosan solvents
Thermal ablation (TA) is known as an alternative therapy to surgery to treat tumors. However, TA-based therapy requires advanced approaches in order to prevent causing damage to healthy tissue around the tumor and selectively target the desired area. Nanoparticles are considered as a promising tool in biomedicine to fulfill these requirements. This study was carried out in order to analyze the effect of iron oxide nanoparticles on the temperature increment during radiofrequency ablation therapy of porcine liver. In addition, this research aimed to experimentally evaluate the impact of two solvents such as agarose and chitosan on the temperature change, when magnetic nanoparticles were dispersed in them. The iron oxide nanoparticles were synthesized by the solvothermal method demonstrating the magnetic properties by acting to the external magnetic field. To increase the local heat superparamagnetic nanoparticles (iron oxide magnetic nanoparticle (IONPs)) of the average size of 20 nm in size and the concentrations from 1 to 10 mg/mL of MNPs with a step size of 1 mg/mL were tested in 10 replicates for each concentration and solvent. Moreover, the temperature changes for dry liver, and 0 mg/mL concentration was checked for calibration and reference purposes. As a sensing system, advanced 16-FBG optical fiber sensors connected to an interrogator were employed allowing the temperature change to be monitored accurately in real time. A maximum temperature of about 142 °C was recorded by a 5 mg/mL concentration of iron oxide nanoparticles dispersed in the agarose solvent
DESIGN AND ANALYSIS OF A FBER‑OPTIC SENSING SYSTEM FOR SHAPE RECONSTRUCTION OF A MINIMALLY INVASIVE SURGICAL NEEDLE
This paper presents the performance analysis of the system for real-time reconstruction of the shape of the rigid medical needle used for minimally invasive surgeries. The system is based on four optical fibers glued along the needle at 90 degrees from each other to measure distributed strain along the needle from four different sides. The distributed measurement is achieved by the interrogator which detects the light scattered from each section of the fiber connected to it and calculates the strain exposed to the fiber from the spectral shift of that backscattered light. This working principle has a limitation of discriminating only a single fiber because of the overlap of backscattering light from several fibers. In order to use four sensing fibers, the Scattering-Level Multiplexing (SLMux) methodology is applied. SLMux is based on fibers with different scattering levels: standard single-mode fibers (SMF) and MgO-nanoparticles doped fibers with a 35–40 dB higher scattering power. Doped fibers are used as sensing fibers and SMFs are used to spatially separate one sensing fiber from another by selecting appropriate lengths of SMFs. The system with four fibers allows obtaining two pairs of opposite fibers used to reconstruct the needle shape along two perpendicular axes. The performance analysis is conducted by moving the needle tip from 0 to 1 cm by 0.1 cm to four main directions (corresponding to the locations of fibers) and to four intermediate directions (between neighboring fibers). The system accuracy for small bending (0.1–0.5 cm) is 90% and for large bending (0.6–1 cm) is approximately 92%
Optimization of Cladding Diameter for Refractive Index Sensing in Tilted Fiber Bragg Gratings
This work presents an experimental investigation of the effect of chemical etching on the refractive index (RI) sensitivity of tilted fiber Bragg gratings (TFBGs). Hydrofluoric acid (HF) was used stepwise in order to reduce the optical fiber diameter from 125 µm to 13 µm. After each etching step, TFBGs were calibrated using two ranges of RI solutions: the first one with high RI variation (from 1.33679 RIU to 1.37078 RIU) and the second with low RI variation (from 1.34722 RIU to 1.34873 RIU). RI sensitivity was analyzed in terms of wavelength shift and intensity change of the grating resonances. The highest amplitude sensitivities obtained are 1008 dB/RIU for the high RI range and 8160 dB/RIU for the low RI range, corresponding to the unetched TFBG. The highest wavelength sensitivities are 38.8 nm/RIU for a fiber diameter of 100 µm for the high RI range, and 156 nm/RIU for a diameter of 40 µm for the small RI range. In addition, the effect of the etching process on the spectral intensity of the cladding modes, their wavelength separation and sensor linearity (R(2)) were studied as well. As a result, an optimization of the etching process is provided, so that the best trade-off between sensitivity, intensity level, and fiber thickness can be obtained
FIBER OPTIC DISTRIBUTED SENSING NETWORK FOR SHAPE SENSING-ASSISTED EPIDURAL NEEDLE GUIDANCE
Epidural anesthesia is a pain management process that requires the insertion of a miniature
needle through the epidural space located within lumbar vertebrae. The use of a guidance system for
manual insertion can reduce failure rates and provide increased efficiency in the process. In this work,
we present and experimentally assess a guidance system based on a network of fiber optic distributed
sensors. The fibers are mounted externally to the needle, without blocking its inner channel, and
through a strain-to-shape detection method reconstruct the silhouette of the epidural device in real
time (1 s). We experimentally assessed the shape sensing methods over 25 experiments performed in
a phantom, and we observed that the sensing system correctly identified bending patterns typical in
epidural insertions, characterized by the different stiffness of the tissues. By studying metrics related
to the curvatures and their temporal changes, we provide identifiers that can potentially serve for
the (in)correct identification of the epidural space, and support the operator through the insertion
process by recognizing the bending patterns
Fiber-Optic Distributed Sensing Network for Thermal Mapping of Gold Nanoparticles-Mediated Radiofrequency Ablation
In this work, we report the design of an optical fiber distributed sensing network for the 2-dimensional (2D) in situ thermal mapping of advanced methods for radiofrequency thermal ablation. The sensing system is based on six high-scattering MgO-doped optical fibers, interleaved by a scattering-level spatial multiplexing approach that allows simultaneous detection of each fiber location, in a 40 × 20 mm grid (7.8 mm2 pixel size). Radiofrequency ablation (RFA) was performed on bovine phantom, using a pristine approach and methods mediated by agarose and gold nanoparticles in order to enhance the ablation properties. The 2D sensors allow the detection of spatiotemporal patterns, evaluating the heating properties and investigating the repeatability. We observe that agarose-based ablation yields the widest ablated area in the best-case scenario, while gold nanoparticles-mediated ablation provides the best trade-off between the ablated area (53.0–65.1 mm2, 61.5 mm2 mean value) and repeatability
Thermo-Visco-Elastometry of RF-Wave-Heated and Ablated Flesh Tissues Containing Au Nanoparticles
We report non-contact laser-based Brillouin light-scattering (BLS) spectroscopy measurements of the viscoelastic properties of hyperthermally radiofrequency (RF)-heated and ablated bovine liver and chicken flesh tissues with embedded gold nanoparticles (AuNPs). The spatial lateral profile of the local surface temperature in the flesh samples during their hyperthermia was measured through optical backscattering reflectometry (OBR) using Mg–silica-NP-doped sensing fibers distributed with an RF applicator and correlated with viscoelastic variations in heat-affected and ablated tissues. Substantial changes in the tissue stiffness after heating and ablation were directly related to their heat-induced structural modifications. The main proteins responsible for muscle elasticity were denatured and irreversibly aggregated during the RF ablation. At T > 100 °C, the proteins constituting the flesh further shrank and became disorganized, leading to substantial plastic deformation of biotissues. Their uniform destruction with larger thermal lesions and a more viscoelastic network was attained via AuNP-mediated RF hyperthermal ablation. The results demonstrated here pave the way for simultaneous real-time hybrid optical sensing of viscoelasticity and local temperature in biotissues during their denaturation and gelation during hyperthermia for future applications that involve mechanical- and thermal-property-controlled theranostics