98 research outputs found

    Laser-Plasma Extreme Ultraviolet Source Incorporating a Cryogenic Xe Target

    Get PDF

    Examining Minimal Important Change of the Self-Assessment Scale of Clinical Reasoning in Occupational Therapy

    Get PDF
    The purpose of the study was to establish and quantify the minimal important change (MIC) value necessary to determine gains or losses in clinical reasoning during student fieldwork assignments as measured by the Self-Assessment of Clinical Reasoning in Occupational Therapy (SA-CROT). This multicenter prospective longitudinal study was conducted with students on their occupational therapy fieldwork in Japan. Two anchor-based methods were used to estimate the MIC values: a receiver operating characteristic-based method and a predictive modeling-based method. The MIC was adjusted based on the percentage of participants who exhibited improvement. Administered were the SA-CROT and the Global Rating of Change (GRC) scale as an anchor. A total of 111 students from 11 occupational therapy educational programs in Japan responded (response rate 29%). Overall, there was a significant difference (p \u3c .001, effect size was r = .80) in SA-CROT before and after fieldwork, and 81% of students showed improvement in the GRC scale. The adjusted MIC value was 3.69, with 95% confidence interval of 2.29–4.97. This anchor-based, adjusted MIC value is the most reliable value to interpret the changes in SA-CROT before and after fieldwork. The SA-CROT\u27s MIC value can be used as a cut-off point from a learner-centered perspective when considering educational methods and environments in fieldwork

    CHEMICALLY CROSS-LINKED HYDROGEL HAVING HIGH MECHANICAL STRENGTH

    Get PDF
    The mechanically tough shape memory gel (SMG) was synthesized. The chemically cross-linked process was applied using a cross-linker named methylenebisacrylamide (MBAA). The SMG was prepared by N, Ndimethyl acrylamide (DMAAm) and stearyl acrylate (SA). The DMAAm is a hydrophilic monomer, whereas SA is a hydrophobic monomer. Due to the transparency, shape memory property, low friction, and high water content, the SMG is suitable for biomedical and optical applications. The physical property such as mechanical strength of most hydrogels is not good enough. However, the properties of these hydrogels are easily controlled by changing the polymer concentration, molecular weight and cross-linker concentrations. It is found that the swelling degree increases with respect to the DMAAm concentration. The mechanical properties of transparent shape memory hydrogel were investigated by the tensile, the compression and the dynamic mechanical analysis. The Young’s modulus gradually decreases with the increase of hydrophilic components. On the other hand, higher Young’s modulus is observed by increasing the high hydrophobic concentration. It is also seen that the mechanical stress decreases with respect to the temperature, indicating the loss of Young’s modulus. The result of dynamic mechanical analysis designates that the water swollen sample has both the elastic and viscous properties

    CHEMICALLY CROSS-LINKED HYDROGEL HAVING HIGH MECHANICAL STRENGTH

    Get PDF
    The mechanically tough shape memory gel (SMG) was synthesized. The chemically cross-linked process was applied using a cross-linker named methylenebisacrylamide (MBAA). The SMG was prepared by N, Ndimethyl acrylamide (DMAAm) and stearyl acrylate (SA). The DMAAm is a hydrophilic monomer, whereas SA is a hydrophobic monomer. Due to the transparency, shape memory property, low friction, and high water content, the SMG is suitable for biomedical and optical applications. The physical property such as mechanical strength of most hydrogels is not good enough. However, the properties of these hydrogels are easily controlled by changing the polymer concentration, molecular weight and cross-linker concentrations. It is found that the swelling degree increases with respect to the DMAAm concentration. The mechanical properties of transparent shape memory hydrogel were investigated by the tensile, the compression and the dynamic mechanical analysis. The Young’s modulus gradually decreases with the increase of hydrophilic components. On the other hand, higher Young’s modulus is observed by increasing the high hydrophobic concentration. It is also seen that the mechanical stress decreases with respect to the temperature, indicating the loss of Young’s modulus. The result of dynamic mechanical analysis designates that the water swollen sample has both the elastic and viscous properties

    A device for assesing microbial activity under ambient hydrostatic pressure: The in situ microbial incubator (ISMI)

    Get PDF
    Research articleMicrobes in the dark ocean are exposed to hydrostatic pressure increasing with depth. Activity rate measurements and biomass production of dark ocean microbes are, however, almost exclusively performed under atmospheric pressure conditions due to technical constraints of sampling equipment maintaining in situ pressure conditions. To evaluate the microbial activity under in situ hydrostatic pressure, we designed and thoroughly tested an in situ microbial incubator (ISMI). The ISMI allows autonomously collecting and incubating seawater at depth, injection of substrate and fixation of the samples after a preprogramed incubation time. The performance of the ISMI was tested in a high-pressure tank and in several field campaigns under ambient hydrostatic pressure by measuring prokaryotic bulk 3H-leucine incorporation rates. Overall, prokaryotic leucine incorporation rates were lower at in situ pressure conditions than under to depressurized conditions reaching only about 50% of the heterotrophic microbial activity measured under depressurized conditions in bathypelagic waters in the North Atlantic Ocean off the northwestern Iberian Peninsula. Our results show that the ISMI is a valuable tool to reliably determine the metabolic activity of deep-sea microbes at in situ hydrostatic pressure conditions. Hence, we advocate that deep-sea biogeochemical and microbial rate measurements should be performed under in situ pressure conditions to obtain a more realistic view on deep-sea biotic processes.IEO-CSIC, FWF, KAKENHI, ERC and GAI

    Role of CFTR in Campylobacter jejuni infection

    Get PDF
    Campylobacter jejuni (C. jejuni) is gastroenteritis inducible food-born pathogen. Invasion and adhesion process are essential for leading gastroenteritis in C. jejuni infection process. As against bacterial strategy for efficacy invasion and adhesion, mucosal layer play a key role in defense systems, which modulated by several ion channels and transporters mediated water flux on the intestine. Cystic fibrosis transmembrane conductance regulator (CFTR) play the main role in waterfulux in intestine, and it closely related with bacterial clearance. We previously reported that C. jejuni infection suppresses CFTR channel activity in intestinal epithelial cells, however the mechanism and importance of this suppression is unclear. This study seeks to elucidate the role of CFTR in C. jejuni-infection. Using HEK293 cells that stably express wild type and mutated CFTR, we found that CFTR attenuated C. jejuni invasion, it was not involved bacterial adhesion or intracellular survival but associated with microtubule-dependent cellular transport. Moreover we revealed that CFTR attenuated function of microtubule motor protein but not microtubule stability, which causes inhibition of C. jejuni-invasion. Meanwhile, the CFTR mutant G551D-CFTR, which has defects in channel activity, suppressed C. jejuni-invasion, whereasΔF508-CFTR, which has defects in maturation, did not suppress, suggesting that CFTR suppression of C. jejuni-invasion is related to CFTR maturation but not channel activity. Taken together, mature CFTR inhibited C. jejuni invasion by regulating microtubule-mediated pathways. We suggest that CFTR plays a critical role in cellular defenses against C. jejuni-invasion, and CFTR suppression may be an initial step in promoting cellular invasion during C. jejuni-infection

    タイトジャンクションは極性化上皮細胞においてCampylobacter jejuniの細胞側面からの効率的な侵入を妨げ炎症によるバリアの破綻は菌の侵入を促進する

    Get PDF
    Campylobacter jejuni invasion is closely related to C. jejuni pathogenicity. The intestinal epithelium contains polarized epithelial cells that form tight junctions (TJs) to provide a physical barrier against bacterial invasion. Previous studies indicated that C. jejuni invasion of non-polarized cells involves several cellular features, including lipid rafts. However, the dynamics of C. jejuni invasion of polarized epithelial cells are not fully understood. Here we investigated the interaction between C. jejuni invasion and TJ formation to characterize the mechanism of C. jejuni invasion in polarized epithelial cells. In contrast to non-polarized epithelial cells, C. jejuni invasion was not affected by depletion of lipid rafts in polarized epithelial cells. However, depletion of lipid rafts significantly decreased C. jejuni invasion in TJ disrupted cells or basolateral infection and repair of cellular TJs suppressed lipid raft-mediated C. jejuni invasion in polarized epithelial cells. In addition, pro-inflammatory cytokine, TNF-a treatment that induce TJ disruption promote C. jejuni invasion and lipid rafts depletion significantly reduced C. jejuni invasion in TNF-a treated cells. These data demonstrated that TJs prevent C. jejuni invasion from the lateral side of epithelial cells, where they play a main part in bacterial invasion and suggest that C. jejuni invasion could be increased in inflammatory condition. Therefore, maintenance of TJs integrity should be considered important in the development of novel therapies for C. jejuni infection

    Infection risk in hemodialysis patient

    Get PDF
    Chronic care patients undergoing hemodialysis for treatment of end-stage renal failure experience higher rates of bloodstream-associated infection due to the patients' compromised immune system and management of the bloodstream through catheters. Staphylococcus species are a common cause of hemodialysis catheter-related bloodstream infections. We investigated environmental bacterial contamination of dialysis wards and contamination of hemodialysis devices to determine the source of bacteria for these infections. All bacterial samples were collected by the swab method and the agarose stamp method. And which bacterium were identified by BBL CRYSTAL Kit or 16s rRNA sequences. In our data, bacterial cell number of hemodialysis device was lower than environment of patient surrounds. But Staphylococcus spp. were found predominantly on the hemodialysis device (46.8%), especially on areas frequently touched by healthcare-workers (such as Touch screen). Among Staphylococcus spp., Staphylococcus epidermidis was most frequently observed (42.1% of Staphylococcus spp.), and more surprising, 48.2% of the Staphylococcus spp. indicated high resistance for methicillin. Our finding suggests that hemodialysis device highly contaminated with bloodstream infection associated bacteria. This study can be used as a source to assess the risk of contamination-related infection and to develop the cleaning system for the better prevention for bloodstream infections in patients with hemodialysis
    corecore