255 research outputs found
Acute Particulate Matter Exposure and Suicide in North East Asia: A Literature Review
A systematic literature review was conducted on research exploring the relationship between acute exposures to ambient particulate matter and changes in suicide rates in North East Asian countries. From the eight studies analyzed limited evidence was found and additional research about the association is suggested
Dispersion Compensation in Acoustic Emission Pipeline Leak Location
The general practice of acoustic leak location relies on two different physical phenomena for determining source location: 1) reduction in signal amplitude with increasing distance from the source (attenuation-based methods), and 2) increase in signal transit time with increasing distance from the source (time-of-flight-based methods). The work discussed here describes efforts at ISU directed at gaining first-principle understanding of the underlying physical phenomena of multi-mode dispersion in fluid filled pipes and to developing time-of-flight source location data processing for such dispersive systems. Results are presented for work detailing the characteristics of pipe propagation, as well as the effect of those characteristics on cross-correlation analysis. Theoretical and experimental results are also shown for two approaches which potentially overcome the limitations of cross-correlation techniques
C. elegans Positive Butanone Learning, Short-term, and Long-term Associative Memory Assays
The memory of experiences and learned information is critical for organisms to make choices that aid their survival. C. elegans navigates its environment through neuron-specific detection of food and chemical odors1, 2, and can associate nutritive states with chemical odors3, temperature4, and the pathogenicity of a food source5
Experimental Studies on the Role of Backfill and Pipeline Characteristics in the Application of Acoustic Leak Location to Underground Pipelines
In response to numerous releases of hazardous substances from leaks in underground storage tanks and pipelines, the EPA requires monitoring so that leaks are detected, located and repaired as quickly as possible. Acoustic leak location offers the possibility of locating leaks which have been identified by other methods but which are not appropriate for performing location. The successful application of acoustic leak location requires that existing data analysis approaches be improved so that the smallest leaks of interest be locatable with the widest possible sensor spacing. Part of developing such approaches requires that the physical conditions which affect the amplitude, frequency, and dispersion of the leak signal as it propagates between source and sensor be better understood.</p
EFFECTIVE TEMPERATURE DIFFERENCES AMONG COVER TYPES IN NORTHEAST MINNESOTA
Climate is probably one of the ultimate influences on the southern boundary of moose (Alces alces) distribution because moose are sensitive to warm temperatures in both summer and winter. In 4 different cover types in northeastern Minnesota we compared ambient temperatures to black globe temperatures that measures mean radiant temperature of the environment. The 4 cover types were mixed forest, treed bogs, coniferous forest, and deciduous forest that comprised ~85% of home ranges of radio-collared moose in northeastern Minnesota. Ambient temperature measurements taken from a weather station within the study area exceeded assumed physiological thresholds of 14 and 20º C for 50 and 33% of the study period, respectively. Black globe temperatures varied among cover types and temperature differences increased within cover types as ambient temperature increased. The greatest difference between deciduous and conifer cover was 2º C in black globe temperature and occurred during warm periods when skies were clear. The biological significance of these temperature differences is not clear and suggests the presence of alternative cooling mechanisms of cover types, such as water and possibly soil and duff layers acting as heat sinks. Use of these potential alternative cooling mechanisms should be considered in future research
Pitfalls in Quantitative Myocardial PET Perfusion I: Myocardial Partial Volume Correction
BACKGROUND: PET quantitative myocardial perfusion requires correction for partial volume loss due to one-dimensional LV wall thickness smaller than scanner resolution.
METHODS: We aimed to assess accuracy of risk stratification for death, MI, or revascularization after PET using partial volume corrections derived from two-dimensional ACR and three-dimensional NEMA phantoms for 3987 diagnostic rest-stress perfusion PETs and 187 MACE events. NEMA, ACR, and Tree phantoms were imaged with Rb-82 or F-18 for size-dependent partial volume loss. Perfusion and Coronary Flow Capacity were recalculated using different ACR- and NEMA-derived partial volume corrections compared by Kolmogorov-Smirnov statistics to standard perfusion metrics with established correlations with MACE.
RESULTS: Partial volume corrections based on two-dimensional ACR rods (two equal radii) and three-dimensional NEMA spheres (three equal radii) over estimate partial volume corrections, quantitative perfusion, and Coronary Flow Capacity by 50% to 150% over perfusion metrics with one-dimensional partial volume correction, thereby substantially impairing correct risk stratification.
CONCLUSIONS: ACR (2-dimensional) and NEMA (3-dimensional) phantoms overestimate partial volume corrections for 1-dimensional LV wall thickness and myocardial perfusion that are corrected with a simple equation that correlates with MACE for optimal risk stratification applicable to most PET-CT scanners for quantifying myocardial perfusion
Leucine Rich α-2 Glycoprotein: A Novel Neutrophil Granule Protein and Modulator of Myelopoiesis
Leucine-rich α2 glycoprotein (LRG1), a serum protein produced by hepatocytes, has been implicated in angiogenesis and tumor promotion. Our laboratory previously reported the expression of LRG1 in murine myeloid cell lines undergoing neutrophilic granulocyte differentiation. However, the presence of LRG1 in primary human neutrophils and a role for LRG1 in regulation of hematopoiesis have not been previously described. Here we show that LRG1 is packaged into the granule compartment of human neutrophils and secreted upon neutrophil activation to modulate the microenvironment. Using immunofluorescence microscopy and direct biochemical measurements, we demonstrate that LRG1 is present in the peroxidase-negative granules of human neutrophils. Exocytosis assays indicate that LRG1 is differentially glycosylated in neutrophils, and co-released with the secondary granule protein lactoferrin. Like LRG1 purified from human serum, LRG1 secreted from activated neutrophils also binds cytochrome c. We also show that LRG1 antagonizes the inhibitory effects of TGFβ1 on colony growth of human CD34+ cells and myeloid progenitors. Collectively, these data invoke an additional role for neutrophils in innate immunity that has not previously been reported, and suggest a novel mechanism whereby neutrophils may modulate the microenvironment via extracellular release of LRG1
Can changing the timing of outdoor air intake reduce indoor concentrations of traffic-related pollutants in schools?
Traffic emissions have been associated with a wide range of adverse health effects. Many schools are situated close to major roads, and as children spend much of their day in school, methods to reduce traffic‐related air pollutant concentrations in the school environment are warranted. One promising method to reduce pollutant concentrations in schools is to alter the timing of the ventilation so that high ventilation time periods do not correspond to rush hour traffic. Health Canada, in collaboration with the Ottawa‐Carleton District School Board, tested the effect of this action by collecting traffic‐related air pollution data from four schools in Ottawa, Canada, during October and November 2013. A baseline and intervention period was assessed in each school. There were statistically significant (P < 0.05) reductions in concentrations of most of the pollutants measured at the two late‐start (9 AM start) schools, after adjusting for outdoor concentrations and the absolute indoor–outdoor temperature difference. The intervention at the early‐start (8 AM start) schools did not have significant reductions in pollutant concentrations. Based on these findings, changing the timing of the ventilation may be a cost‐effective mechanism of reducing traffic‐related pollutants in late‐start schools located near major roads
Curriculum Guidelines for Undergraduate Programs in Data Science
The Park City Math Institute (PCMI) 2016 Summer Undergraduate Faculty Program
met for the purpose of composing guidelines for undergraduate programs in Data
Science. The group consisted of 25 undergraduate faculty from a variety of
institutions in the U.S., primarily from the disciplines of mathematics,
statistics and computer science. These guidelines are meant to provide some
structure for institutions planning for or revising a major in Data Science
- …