85 research outputs found
Intra-Arterial Combination Therapy for Experimental Acute Ischemic Stroke
Acute ischemic stroke continues to devastate millions of individuals worldwide. Current treatments work to restore blood flow but not rescue affected tissue. Our goal was to develop a combination of neuroprotective agents administered intra-arterially following recanalization to target ischemic tissue. Using C57Bl/6J male mice, we performed tandem transient ipsilateral middle cerebral/common carotid artery occlusion, followed by immediate intra-arterial pharmacotherapy administration through a standardized protocol. Two pharmacotherapy agents, verapamil and lubeluzole, were selected based on their potential to modulate different aspects of the ischemic cascade; verapamil, a calcium channel blocker, works in an acute fashion blocking L-type calcium channels, whereas lubeluzole, an N-methyl-D-aspartate modulator, works in a delayed fashion blocking intracellular glutamate trafficking. We hypothesized that combination therapy would provide complimentary and potentially synergistic benefit treating brain tissue undergoing various stages of injury. Physiological measurements for heart rate and pulse distention (blood pressure) demonstrated no detrimental effects between groups, suggesting that the combination drug administration is safe. Tissue analysis demonstrated a significant difference between combination and control (saline) groups in infarct volume, neuronal health, and astrogliosis. Although a significant difference in functional outcome was not observed, we did note that the combination treatment group had a greater percent change from baseline in forced motor movement as compared with controls. This study demonstrates the safety and feasibility of intra-arterial combination therapy following successful recanalization and warrants further study
Intra-Arterial Nitroglycerin as Directed Acute Treatment in Experimental Ischemic Stroke
BACKGROUND: Nitroglycerin (also known as glyceryl trinitrate (GTN)), a vasodilator best known for treatment of ischemic heart disease, has also been investigated for its potential therapeutic benefit in ischemic stroke. The completed Efficacy of Nitric Oxide in Stroke trial suggested that GTN has therapeutic benefit with acute (within 6 hours) transdermal systemic sustained release therapy.
OBJECTIVE: To examine an alternative use of GTN as an acute therapy for ischemic stroke following successful recanalization.
METHODS: We administered GTN IA following transient middle cerebral artery occlusion in mice. Because no standard dose of GTN is available following emergent large vessel occlusion, we performed a dose-response (3.12, 6.25, 12.5, and 25 µg/µL) analysis. Next, we looked at blood perfusion (flow) through the middle cerebral artery using laser Doppler flowmetry. Functional outcomes, including forced motor movement rotor rod, were assessed in the 3.12, 6.25, and 12.5 µg/µL groups. Histological analysis was performed using cresyl violet for infarct volume, and glial fibrillary activating protein (GFAP) and NeuN immunohistochemistry for astrocyte activation and mature neuron survival, respectively.
RESULTS: Overall, we found that acute post-stroke IA GTN had little effect on vessel dilatation after 15 min. Functional analysis showed a significant difference between GTN (3.12 and 6.25 µg/µL) and control at post-stroke day 1. Histological measures showed a significant reduction in infarct volume and GFAP immunoreactivity and a significant increase in NeuN.
CONCLUSIONS: These results demonstrate that acute IA GTN is neuroprotective in experimental ischemic stroke and warrants further study as a potentially new stroke therapy
Relevance and utility of the in-vivo and ex-vivo optical properties of the skin reported in the literature: a review [Invited]
Imaging non-invasively into the human body is currently limited by cost (MRI and CT scan), image resolution (ultrasound), exposure to ionising radiation (CT scan and X-ray), and the requirement for exogenous contrast agents (CT scan and PET scan). Optical imaging has the potential to overcome all these issues but is currently limited by imaging depth due to the scattering and absorption properties of human tissue. Skin is the first barrier encountered by light when imaging non-invasively, and therefore a clear understanding of the way that light interacts with skin is required for progress on optical medical imaging to be made. Here we present a thorough review of the optical properties of human skin measured in-vivo and compare these to the previously collated ex-vivo measurements. Both in-vivo and ex-vivo published data show high inter- and intra-publication variability making definitive answers regarding optical properties at given wavelengths challenging. Overall, variability is highest for ex-vivo absorption measurements with differences of up to 77-fold compared with 9.6-fold for the in-vivo absorption case. The impact of this variation on optical penetration depth and transport mean free path is presented and potential causes of these inconsistencies are discussed. We propose a set of experimental controls and reporting requirements for future measurements. We conclude that a robust in-vivo dataset, measured across a broad spectrum of wavelengths, is required for the development of future technologies that significantly increase the depth of optical imaging
Effect of skin color on optical properties and the implications for medical optical technologies: a review
Significance: Skin color affects light penetration leading to differences in its absorption and scattering properties. COVID-19 highlighted the importance of understanding of the interaction of light with different skin types, e.g., pulse oximetry (PO) unreliably determined oxygen saturation levels in people from Black and ethnic minority backgrounds. Furthermore, with increased use of other medical wearables using light to provide disease information and photodynamic therapies to treat skin cancers, a thorough understanding of the effect skin color has on light is important for reducing healthcare disparities.Aim: The aim of this work is to perform a thorough review on the effect of skin color on optical properties and the implication of variation on optical medical technologies.Approach: Published in vivo optical coefficients associated with different skin colors were collated and their effects on optical penetration depth and transport mean free path (TMFP) assessed.Results: Variation among reported values is significant. We show that absorption coefficients for dark skin are ∼6% to 74% greater than for light skin in the 400 to 1000 nm spectrum. Beyond 600 nm, the TMFP for light skin is greater than for dark skin. Maximum transmission for all skin types was beyond 940 nm in this spectrum. There are significant losses of light with increasing skin depth; in this spectrum, depending upon Fitzpatrick skin type (FST), on average 14% to 18% of light is lost by a depth of 0.1 mm compared with 90% to 97% of the remaining light being lost by a depth of 1.93 mm.Conclusions: Current published data suggest that at wavelengths beyond 940 nm light transmission is greatest for all FSTs. Data beyond 1000 nm are minimal and further study is required. It is possible that the amount of light transmitted through skin for all skin colors will converge with increasing wavelength enabling optical medical technologies to become independent of skin color
Toward a molecular pathogenic pathway for Yersinia pestis YopM
YopM is one of the six “effector Yops” of the human-pathogenic Yersinia, but its mechanism has not been defined. After delivery to J774A.1 monocyte-like cells, YopM can rapidly bind and activate the serine/threonine kinases RSK1 and PRK2. However, in infected mice, effects of Y. pestis YopM have been seen only after 24–48 h post-infection (p.i.). To identify potential direct effects of YopM in-vivo we tested for effects of YopM at 1 h and 16–18 h p.i. in mice infected systemically with 106 bacteria. At 16 h p.i., there was a robust host response to both parent and ΔyopM-1 Y. pestis KIM5. Compared to cells from non-infected mice, CD11b+ cells from spleens of infected mice produced more than 100-fold greater IFNγ. In the corresponding sera there were more than 100-fold greater amounts of IFNγ, G-CSF, and CXCL9, as well as more than 10-fold greater amounts of IL-6, CXCL10, and CXCL1. The only YopM-related differences were slightly lower CXCL10 and IL-6 in sera from mice infected 16 h with parent compared to ΔyopM-1 Y. pestis. Microarray analysis of the CD11b+ cells did not identify consistent transcriptional differences of ≥4-fold at 18 h p.i. However, at 1 h p.i. mRNA for early growth response transcription factor 1 (Egr1) was decreased when YopM was present. Bone marrow-derived macrophages infected for 1 h also expressed lower Egr1 message when YopM was present. Infected J774A.1 cells showed greater expression of Egr1 at 1 h p.i. when YopM was present, but this pattern reversed at 3 h. At 6 h p.i., Cxcl10 mRNA was lower in parent-strain infected cells. We conclude that decreased Egr1 expression is a very early transcriptional effect of YopM and speculate that a pathway may exist from RSK1 through Egr1. These studies revealed novel early transcriptional effects of YopM but point to a time after 18 h of infection when critical transitional events lead to later major effects on cytokine gene transcription
Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk.
Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 × 10(-14), odds ratio = 0.86, 95% confidence interval = 0.82-0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression
Caspase-3 Mediates the Pathogenic Effect of \u3cem\u3e Yersinia pestis \u3c/em\u3e YopM in Liver of C57BL/6 Mice and Contributes to YopM\u27s Function in Spleen
The virulence protein YopM of the plague bacterium Yersinia pestis has different dominant effects in liver and spleen. Previous studies focused on spleen, where YopM inhibits accumulation of inflammatory dendritic cells. In the present study we focused on liver, where PMN function may be directly undermined by YopM without changes in inflammatory cell numbers in the initial days of infection, and foci of inflammation are easily identified. Mice were infected with parent and ΔyopM-1 Y. pestis KIM5, and effects of YopM were assessed by immunohistochemistry and determinations of bacterial viable numbers in organs. The bacteria were found associated with myeloid cells in foci of inflammation and in liver sinusoids. A new in-vivo phenotype of YopM was revealed: death of inflammatory cells, evidenced by TUNEL staining beginning at d 1 of infection. Based on distributions of Ly6G+, F4/80+, and iNOS+ cells within foci, the cells that were killed could have included both PMNs and macrophages. By 2 d post-infection, YopM had no effect on distribution of these cells, but by 3 d cellular decomposition had outstripped acute inflammation in foci due to parent Y. pestis, while foci due to the Δ-1yopM strain still contained many inflammatory cells. The destruction depended on the presence of both PMNs in the mice and YopM in the bacteria. In mice that lacked the apoptosis mediator caspase-3 the infection dynamics were novel: the parent Y. pestis was limited in growth comparably to the ΔyopM-1 strain in liver, and in spleen a partial growth limitation for parent Y. pestis was seen. This result identified caspase-3 as a co-factor or effector in YopM\u27s action and supports the hypothesis that in liver YopM\u27s main pathogenic effect is mediated by caspase-3 to cause apoptosis of PMNs
Comprehensive genetic assessment of the ESR1 locus identifies a risk region for endometrial cancer.
Excessive exposure to estrogen is a well-established risk factor for endometrial cancer (EC), particularly for cancers of endometrioid histology. The physiological function of estrogen is primarily mediated by estrogen receptor alpha, encoded by ESR1. Consequently, several studies have investigated whether variation at the ESR1 locus is associated with risk of EC, with conflicting results. We performed comprehensive fine-mapping analyses of 3633 genotyped and imputed single nucleotide polymorphisms (SNPs) in 6607 EC cases and 37 925 controls. There was evidence of an EC risk signal located at a potential alternative promoter of the ESR1 gene (lead SNP rs79575945, P=1.86×10(-5)), which was stronger for cancers of endometrioid subtype (P=3.76×10(-6)). Bioinformatic analysis suggests that this risk signal is in a functionally important region targeting ESR1, and eQTL analysis found that rs79575945 was associated with expression of SYNE1, a neighbouring gene. In summary, we have identified a single EC risk signal located at ESR1, at study-wide significance. Given SNPs located at this locus have been associated with risk for breast cancer, also a hormonally driven cancer, this study adds weight to the rationale for performing informed candidate fine-scale genetic studies across cancer types.This work was supported by the National Health and Medical Research Council of Australia (ID#1031333 to A B Spurdle, DF, A M Dunning, ID#39435 to ANECS, ID#552402, QIMR Controls); National Health and Medical Research Council of Australia Fellowship Scheme (to A B Spurdle); Principal Research Fellow of Cancer Research UK (to D F Easton); Joseph Mitchell Trust (to A M Dunning); Oxford Comprehensive Biomedical Research Centre (to I Tomlinson); The European Community's Seventh Framework Programme (grant agreement number 22175 (HEALTH-F2-2009-223175) (COGS); Cancer Research UK (C1287/A10118 to COGS and BCAC, C1287/A10710, C12292/A11174, C1281/A12014 to COGS and BCAC, C5047/A15007, C5047/A10692, C8197/A16565, C490/A10124 to SEARCH, CORGI - NSECG, to I Tomlinson); National Institutes of Health (CA128978, R01 CA122443 to MECS and MAY, P30 CA15083 to MECS, P50 CA136393 to MECS and MAY, CAHRES); Post-Cancer GWAS Initiative (1U19 CA148537, 1U19 CA148065, 1U19 CA148112 – the GAME-ON initiative); Department of Defence (W81XWH-10-1-0341); Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer; Komen Foundation for the Cure; The Breast Cancer Research Foundation; Ovarian Cancer Research Fund (to COGS); Cancer Council Queensland (ID#4196615 to ANECS); Council Cancer Tasmania (ID#403031, #ID457636 to ANECS); Medical Research Council (G0000934 to the British 1958 Birth Cohort); Wellcome Trust (068545/Z/02, 085475 to the British 1958 Birth Cohort); Wellcome Trust Human Genetics Grant (090532/Z/09/Z to NSECG); European Union (EU FP7 CHIBCHA to NSECG); The University of Newcastle (to QIMR Controls, to NECS); Gladys M Brawn Senior Research Fellowship (QIMR Controls); The Vincent Fairfax Family Foundation (QIMR Controls); Hunter Medical Research Institute (HCS, NECS); Hunter Area Pathology Service (HCS); ELAN fund of the University of Erlangen (BECS); Verelst Foundation for endometrial cancer (LES); Fred C and Katherine B Anderson Foundation (to MECS, to MAY); Mayo Foundation (to MECS, to MAY); Ovarian Cancer Research Fund with support of the Smith family, in memory of Kathryn Sladek Smith (MECS, PPD/RPCI.07 to OCAC); Helse Vest Grant (MoMaTEC); University of Bergen (MoMaTEC); Melzer Foundation (MoMaTEC); The Norwegian Cancer Society – Harald Andersens legat (MoMaTEC); The Research Council of Norway (MoMaTEC); Haukeland University of Hospital (MoMaTEC); NBN Children's Cancer Research Group (NECS); Ms Jennie Thomas (NECS); regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet (20110222, 20110483, 20110141 and DF 07015 all to RENDOCAS, to KARBAC); The Swedish Labor Market Insurance (100069 to RENDOCAS); The Swedish Cancer Society (11 0439 to RENDOCAS); Agency for Science, Technology and Research of Singapore (CAHRES); Susan G Komen Breast Cancer Foundation (CAHRES); UK National Institute for Health Research Biomedical Research Centres at the University of Cambridge (OCAC); Baden-Württemberg state Ministry of Science, Research and Arts (ESTHER); Federal Ministry of Family Affairs, Senior Citizens, Women and Youth (ESTHER); Federal Ministry of Education and Research (BMBF) Germany (01KW9975/5 to GENICA, 01KW9976/8 to GENICA, 01KW9977/0 to GENICA, 01KW0114 to GENICA, to ESTHER); Robert Bosch Foundation (GENICA); Deutsches Krebsforschungszentrum – DKFZ (GENICA); Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum, IPA (GENICA); Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus (GENICA); Deutsche Krebshilfe e.V. (70-2892-BR I to MARIE); Hamburg Cancer Society (MARIE); German Cancer Research Center (MARIE); Breast Cancer Research Foundation (MCBCS); David F. and Margaret T. Grohne Family Foundation (MCBCS); Ting Tsung and Wei Fong Chao Foundation (MCBCS); VicHealth (MCCS); Cancer Council Victoria (MCCS); Breakthrough Breast Cancer (UKBGS); Institute of Cancer Research (UKBGS); and NHS funding to the NIHR Biomedical Research Centre (UKBGS/ICR).This is the final version of the article. It first appeared from the Society for Endocrinology via http://dx.doi.org/10.1530/ERC-15-031
Candidate locus analysis of the TERT-CLPTM1L cancer risk region on chromosome 5p15 identifies multiple independent variants associated with endometrial cancer risk.
Several studies have reported associations between multiple cancer types and single-nucleotide polymorphisms (SNPs) on chromosome 5p15, which harbours TERT and CLPTM1L, but no such association has been reported with endometrial cancer. To evaluate the role of genetic variants at the TERT-CLPTM1L region in endometrial cancer risk, we carried out comprehensive fine-mapping analyses of genotyped and imputed SNPs using a custom Illumina iSelect array which includes dense SNP coverage of this region. We examined 396 SNPs (113 genotyped, 283 imputed) in 4,401 endometrial cancer cases and 28,758 controls. Single-SNP and forward/backward logistic regression models suggested evidence for three variants independently associated with endometrial cancer risk (P = 4.9 × 10(-6) to P = 7.7 × 10(-5)). Only one falls into a haplotype previously associated with other cancer types (rs7705526, in TERT intron 1), and this SNP has been shown to alter TERT promoter activity. One of the novel associations (rs13174814) maps to a second region in the TERT promoter and the other (rs62329728) is in the promoter region of CLPTM1L; neither are correlated with previously reported cancer-associated SNPs. Using TCGA RNASeq data, we found significantly increased expression of both TERT and CLPTM1L in endometrial cancer tissue compared with normal tissue (TERT P = 1.5 × 10(-18), CLPTM1L P = 1.5 × 10(-19)). Our study thus reports a novel endometrial cancer risk locus and expands the spectrum of cancer types associated with genetic variation at 5p15, further highlighting the importance of this region for cancer susceptibility.This work was supported by the NHMRC Project Grant (ID#1031333). This work was also supported by Cancer Research UK (C1287/A10118,
C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384,
C5047/A15007, C5047/A10692)This is the published version. It first appeared at http://link.springer.com/article/10.1007%2Fs00439-014-1515-4
- …