723 research outputs found

    Pionic Contribution to Neutrinoless Double Beta Decay

    Full text link
    It is well known that neutrinoless double decay is going to play a crucial role in settling the neutrino properties, which cannot be extracted from the neutrino oscillation data. It is, in particular, expected to settle the absolute scale of neutrino mass and determine whether the neutrinos are Majorana particles, i.e. they coincide with their own antiparticles. In order to extract the average neutrino mass from the data one must be able to estimate the contribution all possible high mass intermediate particles. The latter, which occur in practically all extensions of the standard model, can, in principle, be differentiated from the usual mass term, if data from various targets are available. One, however, must first be able reliably calculate the corresponding nuclear matrix elements. Such calculations are extremely difficult since the effective transition operators are very short ranged. For such operators processes like pionic contributions, which are usually negligible, turn out to be dominant. We study such an effect in a non relativistic quark model for the pion and the nucleon.Comment: 7 figures, one table, 20 LaTex page

    Decay Widths of X(1835) as Nucleon-Antinucleon Bound State

    Full text link
    Partial decay widths of various decay channels of the X(1835) are evaluated in the 3P0 quark model, assuming that the X(1835) is a nucleon-antinucleon bound state. It is found that the decays to rho+rho, omega+omega and pion+a0(1450) dominate over other channels, and that the product branching fractions of J/psi to pion+pion+eta and J/psi to pion+pion+eta' are in the same order. We suggest that the X(1835) may be searched in the pion+a0(1450) channel.Comment: Changed X(1850) to X(1835) in Abstrac

    Constraints on the relativistic mean field of Δ\Delta-isobar in nuclear matter

    Full text link
    The effects of the presence of Δ\Delta-isobars in nuclear matter are studied in the framework of relativistic mean-field theory. The existence of stable nuclei at saturation density imposes constraints on the Δ\Delta-isobar self-energy and thereby on the mean-field coupling constants of the scalar and vector mesons with Δ\Delta-isobars. The range of possible values for the scalar and vector coupling constants of Δ\Delta-isobars with respect to the nucleon coupling is investigated and compared to recent predictions of QCD sum-rule calculations.Comment: 8 pages, Latex using Elsevier style, 2 PS figures, minor changes in revised versio

    Direct Wimp Detection in Directional Experiments

    Get PDF
    The recent WMAP data have confirmed that exotic dark matter together with the vacuum energy (cosmological constant) dominate in the flat Universe. Thus the direct dark matter search, consisting of detecting the recoiling nucleus, is central to particle physics and cosmology. Modern particle theories naturally provide viable cold dark matter candidates with masses in the GeV-TeV region. Supersymmetry provides the lightest supersymmetric particle (LSP), theories in extra dimensions the lightest Kaluza-Klein particle (LKP) etc. In such theories the expected rates are much lower than the present experimental goals. So one should exploit characteristic signatures of the reaction, such as the modulation effect and, in directional experiments, the correlation of the event rates with the sun's motion. In standard non directional experiments the modulation is small, less than two per cent and the location of the maximum depends on the unknown particle's mass. In directional experiments, in addition to the forward-backward asymmetry due to the sun's motion, one expects a larger modulation, which depends on the direction of observation. We study such effects both in the case of a light and a heavy target. Furthermore, since it now appears that the planned experiments will be partly directional, in the sense that they can only detect the line of the recoiling nucleus, but not the sense of direction on it, we study which of the above mentioned interesting features, if any, will persist in these less ambitious experiments.Comment: 22 LaTex pages, 28 figure

    Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides

    Full text link
    We study the neutral exciton energy spectrum fine structure and its spin dephasing in transition metal dichalcogenides such as MoS2_2. The interaction of the mechanical exciton with its macroscopic longitudinal electric field is taken into account. The splitting between the longitudinal and transverse excitons is calculated by means of the both electrodynamical approach and kp\mathbf k \cdot \mathbf p perturbation theory. This long-range exciton exchange interaction can induce valley polarization decay. The estimated exciton spin dephasing time is in the picosecond range, in agreement with available experimental data.Comment: 5 pages, 3 figure

    State-by-state calculations for all channels of the exotic (μ,e)(\mu^-,e^-) conversion process

    Get PDF
    The coherent and incoherent channels of the neutrinoless muon to electron conversion in nuclei, μ(A,Z)e(A,Z)\mu^- (A,Z) \to e^- (A,Z)^*, are studied throughout the periodic table. The relevant nuclear matrix elements are computed by explicitly constructing all possible final nuclear states in the context of the quasi-particle RPA. The obtained results are discussed in view of the existing at PSI and TRIUMF experimental data for 48Ti^{48}Ti and 208Pb^{208}Pb and compared with results obtained by: (i) shell model sum-rule techniques (ii) nuclear matter mapped into nuclei via a local density approximation and (iii) earlier similar calculations.Comment: 16 pages (LATEX-file) including 6 tables, 2 PostScript Figures included (Fig1(a)-(d), Fig2(a)-(b)), Refs. 35. Phys. Rev. C, accepte

    Spin and recombination dynamics of excitons and free electrons in p-type GaAs : effect of carrier density

    Full text link
    Carrier and spin recombination are investigated in p-type GaAs of acceptor concentration NA = 1.5 x 10^(17) cm^(-3) using time-resolved photoluminescence spectroscopy at 15 K. At low pho- tocarrier concentration, acceptors are mostly neutral and photoelectrons can either recombine with holes bound to acceptors (e-A0 line) or form excitons which are mostly trapped on neutral acceptors forming the (A0X) complex. It is found that the spin lifetime is shorter for electrons that recombine through the e-A0 transition due to spin relaxation generated by the exchange scattering of free electrons with either trapped or free holes, whereas spin flip processes are less likely to occur once the electron forms with a free hole an exciton bound to a neutral acceptor. An increase of exci- tation power induces a cross-over to a regime where the bimolecular band-to-band (b-b) emission becomes more favorable due to screening of the electron-hole Coulomb interaction and ionization of excitonic complexes and free excitons. Then, the formation of excitons is no longer possible, the carrier recombination lifetime increases and the spin lifetime is found to decrease dramatically with concentration due to fast spin relaxation with free photoholes. In this high density regime, both the electrons that recombine through the e-A0 transition and through the b-b transition have the same spin relaxation time.Comment: 4 pages, 5 figure
    corecore