4 research outputs found

    Allopolyploid origin and genome differentiation of the parasitic species Cuscuta veatchii (Convolvulaceae) revealed by genomic in situ hybridization.

    No full text
    Interspecific hybridization and genome duplication to form allopolyploids are major evolutionary events in angiosperms. In the parasitic genus Cuscuta (Convolvulaceae), molecular data suggested the existence of species of hybrid origin. One of them, C. veatchii, has been proposed as a hybrid between C. denticulata and C. nevadensis, both included in sect. Denticulatae. To test this hypothesis, a cytogenetic analysis was performed with CMA/DAPI staining and fluorescent in situ hybridization using 5S and 35S rDNA and genomic probes. Chromosomes of C. denticulata were small with a well-defined centromeric region, whereas C. nevadensis had larger, densely stained chromosomes, and less CMA+ heterochromatic bands. Cuscuta veatchii had 2n = 60 chromosomes, about 30 of them similar to those of C. denticulata and the remaining to C. nevadensis. GISH analysis confirmed the presence of both subgenomes in the allotetraploid C. veatchii. However, the number of rDNA sites and the haploid karyotype length in C. veatchii were not additive. The diploid parentals had already diverged in their chromosomes structure, whereas the reduction in the number of rDNA sites more probably occurred after hybridization. As phylogenetic data suggested a recent divergence of the progenitors, these species should have a high rate of karyotype evolution.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore