2,116 research outputs found

    Random forest prediction of Alzheimer's disease using pairwise selection from time series data

    Full text link
    Time-dependent data collected in studies of Alzheimer's disease usually has missing and irregularly sampled data points. For this reason time series methods which assume regular sampling cannot be applied directly to the data without a pre-processing step. In this paper we use a machine learning method to learn the relationship between pairs of data points at different time separations. The input vector comprises a summary of the time series history and includes both demographic and non-time varying variables such as genetic data. The dataset used is from the 2017 TADPOLE grand challenge which aims to predict the onset of Alzheimer's disease using including demographic, physical and cognitive data. The challenge is a three-fold diagnosis classification into AD, MCI and control groups, the prediction of ADAS-13 score and the normalised ventricle volume. While the competition proceeds, forecasting methods may be compared using a leaderboard dataset selected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and with standard metrics for measuring accuracy. For diagnosis, we find an mAUC of 0.82, and a classification accuracy of 0.73. The results show that the method is effective and comparable with other methods.Comment: 6 pages, 1 figure, 6 table

    Multimodal MRI-based Imputation of the Aβ+ in Early Mild Cognitive Impairment.

    Get PDF
    ObjectiveTo identify brain atrophy from structural-MRI and cerebral blood flow(CBF) patterns from arterial spin labeling perfusion-MRI that are best predictors of the Aβ-burden, measured as composite 18F-AV45-PET uptake, in individuals with early mild cognitive impairment(MCI). Furthermore, to assess the relative importance of imaging modalities in classification of Aβ+/Aβ- early mild cognitive impairment.MethodsSixty-seven ADNI-GO/2 participants with early-MCI were included. Voxel-wise anatomical shape variation measures were computed by estimating the initial diffeomorphic mapping momenta from an unbiased control template. CBF measures normalized to average motor cortex CBF were mapped onto the template space. Using partial least squares regression, we identified the structural and CBF signatures of Aβ after accounting for normal cofounding effects of age, sex, and education.Results18F-AV45-positive early-MCIs could be identified with 83% classification accuracy, 87% positive predictive value, and 84% negative predictive value by multidisciplinary classifiers combining demographics data, ApoE ε4-genotype, and a multimodal MRI-based Aβ score.InterpretationMultimodal-MRI can be used to predict the amyloid status of early-MCI individuals. MRI is a very attractive candidate for the identification of inexpensive and non-invasive surrogate biomarkers of Aβ deposition. Our approach is expected to have value for the identification of individuals likely to be Aβ+ in circumstances where cost or logistical problems prevent Aβ detection using cerebrospinal fluid analysis or Aβ-PET. This can also be used in clinical settings and clinical trials, aiding subject recruitment and evaluation of treatment efficacy. Imputation of the Aβ-positivity status could also complement Aβ-PET by identifying individuals who would benefit the most from this assessment

    A Novel Joint Brain Network Analysis Using Longitudinal Alzheimer's Disease Data.

    Get PDF
    There is well-documented evidence of brain network differences between individuals with Alzheimer's disease (AD) and healthy controls (HC). To date, imaging studies investigating brain networks in these populations have typically been cross-sectional, and the reproducibility of such findings is somewhat unclear. In a novel study, we use the longitudinal ADNI data on the whole brain to jointly compute the brain network at baseline and one-year using a state of the art approach that pools information across both time points to yield distinct visit-specific networks for the AD and HC cohorts, resulting in more accurate inferences. We perform a multiscale comparison of the AD and HC networks in terms of global network metrics as well as at the more granular level of resting state networks defined under a whole brain parcellation. Our analysis illustrates a decrease in small-worldedness in the AD group at both the time points and also identifies more local network features and hub nodes that are disrupted due to the progression of AD. We also obtain high reproducibility of the HC network across visits. On the other hand, a separate estimation of the networks at each visit using standard graphical approaches reveals fewer meaningful differences and lower reproducibility

    Genetic variation affecting exon skipping contributes to brain structural atrophy in Alzheimer's disease

    Get PDF
    Genetic variation in cis-regulatory elements related to splicing machinery and splicing regulatory elements (SREs) results in exon skipping and undesired protein products. We developed a splicing decision model to identify actionable loci among common SNPs for gene regulation. The splicing decision model identified SNPs affecting exon skipping by analyzing sequence-driven alternative splicing (AS) models and by scanning the genome for the regions with putative SRE motifs. We used non-Hispanic Caucasians with neuroimaging, and fluid biomarkers for Alzheimer's disease (AD) and identified 17,088 common exonic SNPs affecting exon skipping. GWAS identified one SNP (rs1140317) in HLA-DQB1 as significantly associated with entorhinal cortical thickness, AD neuroimaging biomarker, after controlling for multiple testing. Further analysis revealed that rs1140317 was significantly associated with brain amyloid-f deposition (PET and CSF). HLA-DQB1 is an essential immune gene and may regulate AS, thereby contributing to AD pathology. SRE may hold potential as novel therapeutic targets for AD

    Cerebral Amyloid and Hypertension are Independently Associated with White Matter Lesions in Elderly.

    Get PDF
    In cognitively normal (CN) elderly individuals, white matter hyperintensities (WMH) are commonly viewed as a marker of cerebral small vessel disease (SVD). SVD is due to exposure to systemic vascular injury processes associated with highly prevalent vascular risk factors (VRFs) such as hypertension, high cholesterol, and diabetes. However, cerebral amyloid accumulation is also prevalent in this population and is associated with WMH accrual. Therefore, we examined the independent associations of amyloid burden and VRFs with WMH burden in CN elderly individuals with low to moderate vascular risk. Participants (n = 150) in the Alzheimer's Disease Neuroimaging Initiative (ADNI) received fluid attenuated inversion recovery (FLAIR) MRI at study entry. Total WMH volume was calculated from FLAIR images co-registered with structural MRI. Amyloid burden was determined by cerebrospinal fluid Aβ1-42 levels. Clinical histories of VRFs, as well as current measurements of vascular status, were recorded during a baseline clinical evaluation. We tested ridge regression models for independent associations and interactions of elevated blood pressure (BP) and amyloid to total WMH volume. We found that greater amyloid burden and a clinical history of hypertension were independently associated with greater WMH volume. In addition, elevated BP modified the association between amyloid and WMH, such that those with either current or past evidence of elevated BP had greater WMH volumes at a given burden of amyloid. These findings are consistent with the hypothesis that cerebral amyloid accumulation and VRFs are independently associated with clinically latent white matter damage represented by WMHs. The potential contribution of amyloid to WMHs should be further explored, even among elderly individuals without cognitive impairment and with limited VRF exposure
    • …
    corecore