2 research outputs found

    Elexacaftor-tezacaftor-ivacaftor in patients with cystic fibrosis ineligible for clinical trials: a 24-week observational study

    Get PDF
    Introduction: Seminal clinical trials with the triple combination of elexacaftor-tezacaftor-ivacaftor (ETI) demonstrated clinical efficacy in people with cystic fibrosis (pwCF) who carry at least one F508del mutation. However, due to exclusion criteria of these clinical trials, the effect of ETI was not studied in a substantial number of pwCF. Thus, we ran a single center trial to evaluate a clinical efficacy of ETI treatment in adult pwCF who were ineligible for enrollment in registration studies.Methods: PwCF on ETI with prior lumacaftor-ivacaftor therapy, severe airway obstruction, well-preserved lung function, or with airway infection with pathogens at risk of more rapid decline in lung function formed the study group, while all the others on ETI formed the control group. Lung function, nutritional status and sweat chloride concentration were assessed before and after initialization of ETI therapy over a 6-month period.Results: Approximately a half of the ETI-treated pwCF at the adult Prague CF center (49 of 96) were assigned to the study group. Their mean changes in body mass index ( + 1.04 kg/m2) and in sweat chloride concentration (−48.4 mmol/L) were similar to the control group ( + 1.02 kg/m2; −49.7 mmol/L), while the mean change in percent predicted forced expiratory volume in 1 s (ppFEV1; + 10.3 points) was significantly lower than in the control group ( + 15.8 points) (p = 0.0015). In the subgroup analysis, pwCF with severe airway obstruction (ppFEV1 <40) and pwCF with well-preserved lung function (ppFEV1 >90) showed a less potential for improvement in lung function during the ETI treatment than controls (median change in ppFEV1 + 4.9 points and + 9.5 points, respectively).Conclusion: PwCF not eligible for inclusion in clinical trials demonstrated improvement in lung function and nutritional status following the initiation of treatment with the ETI combination. Moderate increase in ppFEV1 was observed in those with severe airway obstruction or well-preserved lung function

    Complex Immunometabolic Profiling Reveals the Activation of Cellular Immunity and Biliary Lesions in Patients with Severe COVID-19

    No full text
    This study aimed to assess the key laboratory features displayed by coronavirus disease 2019 (COVID-19) inpatients that are associated with mild, moderate, severe, and fatal courses of the disease, and through a longitudinal follow-up, to understand the dynamics of the COVID-19 pathophysiology. All severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive patients admitted to the University Hospital in Motol between March and June 2020 were included in this study. A severe course of COVID-19 was associated with an elevation of proinflammatory markers; an efflux of immature granulocytes into peripheral blood; the activation of CD8 T cells, which infiltrated the lungs; transient liver disease. In particular, the elevation of serum gamma-glutamyl transferase (GGT) and histological signs of cholestasis were highly specific for patients with a severe form of the disease. In contrast, patients with a fatal course of COVID-19 failed to upregulate markers of inflammation, showed discoordination of the immune response, and progressed toward acute kidney failure. COVID-19 is a disease with a multi-organ affinity that is characterized by the activation of innate and cellular adaptive immunity. Biliary lesions with an elevation of GGT and the organ infiltration of interleukin 6 (IL-6)-producing cells are the defining characteristics for patients with the fulminant disease
    corecore