23 research outputs found

    Chest X-ray Classification for the Detection of COVID-19 Using Deep Learning Techniques

    Get PDF
    Recent technological developments pave the path for deep learning-based techniques to be used in almost every domain of life. The precision of deep learning techniques make it possible for these to be used in the medical field for the classification and detection of various diseases. Recently, the coronavirus (COVID-19) pandemic has put a lot of pressure on the health system all around the world. The diagnosis of COVID-19 is possible by PCR testing and medical imagining. Since COVID-19 is highly contagious, diagnosis using chest X-ray is considered safe in various situations. In this study, a deep learning-based technique is proposed to classify COVID-19 infection from other non-COVID-19 infections. To classify COVID-19, three different pre-trained models named EfficientNetB1, NasNetMobile and MobileNetV2 are used. The augmented dataset is used for training deep learning models while two different training strategies have been used for classification. In this study, not only are the deep learning model fine-tuned but also the hyperparameters are fine-tuned, which significantly improves the performance of the fine-tuned deep learning models. Moreover, the classification head is regularized to improve the performance. For the evaluation of the proposed techniques, several performance parameters are used to gauge the performance. EfficientNetB1 with regularized classification head outperforms the other models. The proposed technique successfully classifies four classes that include COVID-19, viral pneumonia, lung opacity, and normal, with an accuracy of 96.13%. The proposed technique shows superiority in terms of accuracy when compared with recent techniques present in the literature

    Dynamic Hand Gesture Recognition Using 3D-CNN and LSTM Networks

    Get PDF
    Recognition of dynamic hand gestures in real-time is a difficult task because the system can never know when or from where the gesture starts and ends in a video stream. Many researchers have been working on vision-based gesture recognition due to its various applications. This paper proposes a deep learning architecture based on the combination of a 3D Convolutional Neural Network (3D-CNN) and a Long Short-Term Memory (LSTM) network. The proposed architecture extracts spatial-temporal information from video sequences input while avoiding extensive computation. The 3D-CNN is used for the extraction of spectral and spatial features which are then given to the LSTM network through which classification is carried out. The proposed model is a light-weight architecture with only 3.7 million training parameters. The model has been evaluated on 15 classes from the 20BN-jester dataset available publicly. The model was trained on 2000 video-clips per class which were separated into 80% training and 20% validation sets. An accuracy of 99% and 97% was achieved on training and testing data, respectively. We further show that the combination of 3D-CNN with LSTM gives superior results as compared to MobileNetv2 + LSTM

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Augmented Reality (AR) and Cyber-Security for Smart Cities—A Systematic Literature Review

    Full text link
    Augmented Reality (AR) and cyber-security technologies have existed for several decades, but their growth and progress in recent years have increased exponentially. The areas of application for these technologies are clearly heterogeneous, most especially in purchase and sales, production, tourism, education, as well as social interaction (games, entertainment, communication). Essentially, these technologies are recognized worldwide as some of the pillars of the new industrial revolution envisaged by the industry 4.0 international program, and are some of the leading technologies of the 21st century. The ability to provide users with required information about processes or procedures directly into the virtual environment is archetypally the fundamental factor in considering AR as an effective tool for different fields. However, the advancement in ICT has also brought about a variety of cybersecurity challenges, with a depth of evidence anticipating policy, architectural, design, and technical solutions in this very domain. The specific applications of AR and cybersecurity technologies have been described in detail in a variety of papers, which demonstrate their potential in diverse fields. In the context of smart cities, however, there is a dearth of sources describing their varied uses. Notably, a scholarly paper that consolidates research on AR and cybersecurity application in this context is markedly lacking. Therefore, this systematic review was designed to identify, describe, and synthesize research findings on the application of AR and cybersecurity for smart cities. The review study involves filtering information of their application in this setting from three key databases to answer the predefined research question. The keynote part of this paper provides an in-depth review of some of the most recent AR and cybersecurity applications for smart cities, emphasizing potential benefits, limitations, as well as open issues which could represent new challenges for the future. The main finding that we found is that there are five main categories of these applications for smart cities, which can be classified according to the main articles, such as tourism, monitoring, system management, education, and mobility. Compared with the general literature on smart cities, tourism, monitoring, and maintenance AR applications appear to attract more scholarly attention

    An Efficient Framework for Securing the Smart City Communication Networks

    Full text link
    Recently, smart cities have increasingly been experiencing an evolution to improve the lifestyle of citizens and society. These emerge from the innovation of information and communication technologies (ICT) which are able to create a new economic and social opportunities. However, there are several challenges regarding our security and expectation of privacy. People are already involved and interconnected by using smart phones and other appliances. In many cities, smart energy meters, smart devices, and security appliances have recently been standardized. Full connectivity between public venues, homes, cares, and some other social systems are on their way to be applied, which are known as Internet of Things. In this paper, we aim to enhance the performance of security in smart city communication networks by using a new framework and scheme that provide an authentication and high confidentiality of data. The smart city system can achieve mutual authentication and establish the shared session key schemes between smart meters and the control center in order to secure a two-way communication channel. In our extensive simulation, we investigated and evaluated the security performance of the smart city communication network with and without our proposed scheme in terms of throughput, latency, load, and traffic received packet per seconds. Furthermore, we implemented and applied a man-in-the-middle (MITM) attack and network intrusion detection system (NIDS) in our proposed technique to validate and measure the security requirements maintaining the constrained resources

    An Efficient Framework for Securing the Smart City Communication Networks

    Full text link
    Recently, smart cities have increasingly been experiencing an evolution to improve the lifestyle of citizens and society. These emerge from the innovation of information and communication technologies (ICT) which are able to create a new economic and social opportunities. However, there are several challenges regarding our security and expectation of privacy. People are already involved and interconnected by using smart phones and other appliances. In many cities, smart energy meters, smart devices, and security appliances have recently been standardized. Full connectivity between public venues, homes, cares, and some other social systems are on their way to be applied, which are known as Internet of Things. In this paper, we aim to enhance the performance of security in smart city communication networks by using a new framework and scheme that provide an authentication and high confidentiality of data. The smart city system can achieve mutual authentication and establish the shared session key schemes between smart meters and the control center in order to secure a two-way communication channel. In our extensive simulation, we investigated and evaluated the security performance of the smart city communication network with and without our proposed scheme in terms of throughput, latency, load, and traffic received packet per seconds. Furthermore, we implemented and applied a man-in-the-middle (MITM) attack and network intrusion detection system (NIDS) in our proposed technique to validate and measure the security requirements maintaining the constrained resources

    In vitro biological activity of Hydroclathrus clathratus and its use as an extracellular bioreductant for silver nanoparticle formation

    Full text link
    The adaptive nature of algae results in producing unique chemical components that are gaining attention due to their efficiency in many fields and abundance. In this study, we screened the phytochemicals from the brown alga Hydroclathrus clathratus and tested its ability to produce silver nanoparticles (AgNPs) extracellularly for the first time. Lastly, we investigated its biological activity against a variety of bacteria. The biosynthesized nanoparticles were characterized by UV-visible spectroscopy, Fourier-transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and energy-dispersive spectroscopy. The biological efficacy of AgNPs was tested against eighteen different bacteria, including seven multidrug-resistant bacteria. Phytochemical screening of the alga revealed the presence of saturated and unsaturated fatty acids, sugars, carboxylic acid derivatives, triterpenoids, steroids, and other components. Formed AgNPs were stable and ranged in size between 7 and 83 nm and presented a variety of shapes. Acinetobacter baumannii, Staphylococcus aureus, Methicillin-resistant S. aureus (MRSA), and MDR A. baumannii were the most affected among the bacteria. The biofilm formation and development assay presented a noteworthy activity against MRSA, with an inhibition percentage of 99%. Acknowledging the future of nano-antibiotics encourages scientists to explore and enhance their potency, notably if they were obtained using green, rapid, and efficient methods
    corecore