15 research outputs found

    Looking Back, Moving Forward: Technical, Normative, and Political Dimensions of School Discipline

    No full text
    Purpose: School discipline reformers have presumed that such work is largely a technical task, emphasizing discrete changes to discipline policies and protocols. Yet prior theory and research suggest that emphasizing technical changes may overlook additional and important aspects of reform, namely, the normative and political dimensions within which technical aspects are embedded. Although this earlier work appears relevant to contemporary school discipline reform, the extent to which this theory extends to school discipline remains unestablished. The purpose of this article is to show how this earlier line of theory extends to the topic of school discipline. Method: We draw on data collected as part of a qualitative study in which we conducted semistructured interviews and focus groups with 198 educators from 33 public schools on the topic of school discipline. We applied an equity-minded reform theory to examine technical, normative, and political dimensions of school discipline. Findings and Implications: We found the technical dimension of school discipline was characterized by educators’ strategic use of school resources and capacity building; normative conditions that supported conflict prevention and increased responsibility; and political dynamics in which administrators shifted power to encourage more inclusive discipline strategies. Furthermore, using this model illuminated interrelationships between dimensions, suggesting that unidimensional models—and their related reforms—may overlook nuances of this important reform issue. This theoretical extension provides a more holistic conceptualization than currently used in reform efforts, contributes to earlier lines of scholarship, and opens up new avenues of future inquiry

    The Presence of Virus Neutralizing Antibodies Is Highly Associated with Protection against Virulent Challenge in Domestic Pigs Immunized with ASFV live Attenuated Vaccine Candidates

    No full text
    African swine fever virus (ASFV) is currently producing a pandemic affecting a large area of Eurasia, and more recently, the Dominican Republic in the Western Hemisphere. ASFV is a large and structurally complex virus with a large dsDNA genome encoding for more than 150 genes. Live attenuated virus strains can induce protection in domestic swine against disease produced by homologous virulent parental viruses. The roles of the different immune mechanisms induced by the attenuated strains in protection still need to be understood. In particular, the role of ASFV neutralizing antibody in protection still is an important controversial issue to be elucidated. Here we present the development of a novel methodology to detect virus neutralizing antibodies based on the reduction of virus infectivity in a Vero cell adapted ASFV strain. The described method was used to assess levels of virus neutralizing antibodies in domestic swine inoculated with live attenuated ASFV. Results demonstrated a high association between the presence of virus neutralizing antibodies and protection in 84 animals immunized with the recombinant vaccine candidates ASFV-G-Δ9GL/ΔUK or ASFV-G-ΔI177L. To our knowledge, this is the first report demonstrating an association between virus neutralizing antibodies and protection against virulent challenge in such a large number of experimental individuals

    Full genome sequence for the African swine fever virus outbreak in the Dominican Republic in 1980

    No full text
    Abstract African swine fever is a lethal disease of domestic pigs, geographically expanding as a pandemic, that is affecting countries across Eurasia and severely damaging their swine production industry. After more than 40 years of being absent in the Western hemisphere, in 2020 ASF reappeared in the Dominican Republic and Haiti. The recent outbreak strain in the Dominican Republic has been identified as a genotype II ASFV a derivative of the ASF strain circulating in Asia and Europe. However, to date no full-length genome sequence from either the 1978–1980 Here we report the complete genome sequence of an African swine fever virus (ASFV) (DR-1980) that was previously isolated from blood collected in 1980 from the Dominican Republic at the end of the last outbreak, before culling of all swine on the island of Hispaniola and stored in the Plum Island Animal Disease Center ASFV repository. A contig representing the full-length genome (183,687 base pairs) was de novo assembled into a single contig using both Nanopore and Illumina sequences. DR-1980 was determined to belong to genotype I and, as determined by full genome comparison, a close relative to the sequenced Sardinia viruses that were causing outbreaks at this time

    Evaluation of the Function of ASFV Gene E66L in the Process of Virus Replication and Virulence in Swine

    No full text
    African swine fever virus (ASFV) is the etiological agent of an economically important disease of swine currently affecting large areas of Africa, Eurasia and the Caribbean. ASFV has a complex structure harboring a large dsDNA genome which encodes for more than 160 proteins. One of the proteins, E66L, has recently been involved in arresting gene transcription in the infected host cell. Here, we investigate the role of E66L in the processes of virus replication in swine macrophages and disease production in domestic swine. A recombinant ASFV was developed (ASFV-G-∆E66L), from the virulent parental Georgia 2010 isolate (ASFV-G), harboring the deletion of the E66L gene as a tool to assess the role of the gene. ASFV-G-∆E66L showed that the E66L gene is non-essential for ASFV replication in primary swine macrophages when compared with the parental highly virulent field isolate ASFV-G. Additionally, domestic pigs infected with ASFV-G-∆E66L developed a clinical disease undistinguishable from that produced by ASFV-G. Therefore, E66L is not involved in virus replication or virulence in domestic pigs

    ASFV Gene A151R Is Involved in the Process of Virulence in Domestic Swine

    No full text
    African swine fever virus (ASFV) is the etiological agent of a swine pandemic affecting a large geographical area extending from Central Europe to Asia. The viral disease was also recently identified in the Dominican Republic and Haiti. ASFV is a structurally complex virus with a large dsDNA genome that encodes for more than 150 genes. Most of these genes have not been experimentally characterized. One of these genes, A151R, encodes for a nonstructural protein and has been reported to be required for the replication of a Vero-cell-adapted ASFV strain. Here, we evaluated the role of the A151R gene in the context of the highly virulent field isolate Georgia 2010 (ASFV-G) during virus replication in swine macrophage cell cultures and during experimental infection in swine. We show that the recombinant virus ASFV-G-∆A151R, harboring a deletion of the A151R gene, replicated in swine macrophage cultures as efficiently as the parental virus ASFV-G, indicating that the A151R gene is not required for ASFV replication in swine macrophages. Interestingly, experimental infection of domestic pigs demonstrated that ASFV-G-∆A151R had a decreased replication rate and produced a drastic reduction in virus virulence. Animals were intramuscularly inoculated with 102 HAD50 of ASFV-G-∆A151R and compared with pigs receiving a similar dose of virulent ASFV-G. All ASFV-G-infected pigs developed an acute lethal form of the disease, while those inoculated with ASFV-G-∆A151R remained healthy during the 28-day observational period, with the exception of only one showing a protracted, but fatal, form of the disease. All ASFV-G-∆A151R surviving animals presented protracted viremias with lower virus titers than those detected in ASFV-G-infected animals. In addition, three out of the four animals surviving the infection with ASFV-G-∆A151R were protected against the challenge with the virulent parental virus ASFV-G. This is the first report indicating that the ASFV A151R gene is involved in virus virulence in domestic swine, suggesting that its deletion may be used to increase the safety profile of currently experimental vaccines

    Deletion of the EP296R Gene from the Genome of Highly Virulent African Swine Fever Virus Georgia 2010 Does Not Affect Virus Replication or Virulence in Domestic Pigs

    No full text
    African swine fever virus (ASFV) causes a lethal disease (ASF) in domestic pigs, African swine fever (ASF). ASF is currently producing a pandemic affecting pig production across Eurasia, leading to a shortage of food accessibility. ASFV is structurally complex, harboring a large genome encoding over 150 genes. One of them, EP296R, has been shown to encode for an endonuclease that is necessary for the efficient replication of the virus in swine macrophages, the natural ASFV target cell. Here, we report the development of a recombinant virus, ASFV-G-∆EP296R, harboring the deletion of the EP296R gene from the genome of the highly virulent field isolate ASFV Georgia 2010 (ASFV-G). The recombinant ASFV-G-∆EP296R replicates in primary swine macrophages with similar kinetics as the parental virus ASFV-G. Pigs experimentally infected by the intramuscular route with 102 HAD50 show a slightly protracted, although lethal, presentation of the disease when compared to that of animals inoculated with parental ASFV-G. Viremia titers in the ASFV-G-∆EP296R-infected animals closely followed the kinetics of presentation of clinical disease. Results presented here demonstrate that ASFV-G-∆EP296R is not essential for the processes of ASFV replication in swine macrophages, nor is it radically involved in the process of virus replication or disease production in domestic pigs

    Deletion of an African Swine Fever Virus ATP-Dependent RNA Helicase QP509L from the Highly Virulent Georgia 2010 Strain Does Not Affect Replication or Virulence

    No full text
    African swine fever virus (ASFV) produces a lethal disease (ASF) in domestic pigs, which is currently causing a pandemic deteriorating pig production across Eurasia. ASFV is a large and structurally complex virus with a large genome harboring more than 150 genes. ASFV gene QP509L has been shown to encode for an ATP-dependent RNA helicase, which appears to be important for efficient virus replication. Here, we report the development of a recombinant virus, ASFV-G-∆QP509L, having deleted the QP509L gene in the highly virulent field isolate ASFV Georgia 2010 (ASFV-G). It is shown that ASFV-G-∆QP509L replicates in primary swine macrophage cultures as efficiently as the parental virus ASFV-G. In addition, the experimental inoculation of pigs with 102 HAD50 by the intramuscular route produced a slightly protracted but lethal clinical disease when compared to that of animals inoculated with virulent parental ASFV-G. Viremia titers in animals infected with ASFV-G-∆QP509L also had slightly protracted kinetics of presentation. Therefore, ASFV gene QP509L is not critical for the processes of virus replication in swine macrophages, nor is it clearly involved in virus replication and virulence in domestic pigs

    The 2022 Outbreaks of African Swine Fever Virus Demonstrate the First Report of Genotype II in Ghana

    No full text
    African swine fever (ASF) is a lethal disease of domestic pigs that has been causing outbreaks for over a century in Africa ever since its first discovery in 1921. Since 1957, there have been sporadic outbreaks outside of Africa; however, no outbreak has been as devastating and as far-reaching as the current pandemic that originated from a 2007 outbreak in the Republic of Georgia. Derivatives with a high degree of similarity to the progenitor strain, ASFV-Georgia/2007, have been sequenced from various countries in Europe and Asia. However, the current strains circulating in Africa are largely unknown, and 24 different genotypes have been implicated in different outbreaks. In this study, ASF isolates were collected from samples from swine suspected of dying from ASF on farms in Ghana in early 2022. While previous studies determined that the circulating strains in Ghana were p72 Genotype I, we demonstrate here that the strains circulating in 2022 were derivatives of the p72 Genotype II pandemic strain. Therefore, this study demonstrates for the first time the emergence of Genotype II ASFV in Ghana
    corecore