20 research outputs found

    Lentiviral Engineered Fibroblasts Expressing Codon-Optimized COL7A1 Restore Anchoring Fibrils in RDEB

    Get PDF
    Cells therapies, engineered to secrete replacement proteins, are being developed to ameliorate otherwise debilitating diseases. Recessive dystrophic epidermolysis bullosa (RDEB) is caused by defects of type VII collagen, a protein essential for anchoring fibril formation at the dermal-epidermal junction. Whereas allogeneic fibroblasts injected directly into the dermis can mediate transient disease modulation, autologous gene-modified fibroblasts should evade immunological rejection and support sustained delivery of type VII collagen at the dermal-epidermal junction. We demonstrate the feasibility of such an approach using a therapeutic grade, self-inactivating-lentiviral vector, encoding codon-optimized COL7A1, to transduce RDEB fibroblasts under conditions suitable for clinical application. Expression and secretion of type VII collagen was confirmed with transduced cells exhibiting supranormal levels of protein expression, and ex vivo migration of fibroblasts was restored in functional assays. Gene-modified RDEB fibroblasts also deposited type VII collagen at the dermal-epidermal junction of human RDEB skin xenografts placed on NOD-scid IL2Rgammanull recipients, with reconstruction of human epidermal structure and regeneration of anchoring fibrils at the dermal-epidermal junction. Fibroblast-mediated restoration of protein and structural defects in this RDEB model strongly supports proposed therapeutic applications in man

    Gene therapies for inherited skin disorders

    No full text

    Cell Therapy in Dermatology

    No full text
    Harnessing the regenerative capacity of keratinocytes and fibroblasts from human skin has created new opportunities to develop cell-based therapies for patients. Cultured cells and bioengineered skin products are being used to treat patients with inherited and acquired skin disorders associated with defective skin, and further clinical trials of new products are in progress. The capacity of extracutaneous sources of cells such as bone marrow is also being investigated for its plasticity in regenerating skin, and new strategies, such as the derivation of inducible pluripotent stem cells, also hold great promise for future cell therapies in dermatology. This article reviews some of the preclinical and clinical studies and future directions relating to cell therapy in dermatology, particularly for inherited skin diseases associated with fragile skin and poor wound healing

    Bone marrow transplantation in epidermolysis bullosa

    No full text
    Epidermolysis bullosa (EB) is a heterogeneous group of inherited blistering skin diseases. Severe forms of EB are associated with increased morbidity and mortality, and there is currently no effective treatment. To combat severe complications of EB, such as chronic erosions, scarring and malignancy, effective therapy needs to be given systemically and at an early age. One recent therapeutic advancement has been a clinical trial of whole bone marrow (BM) transplantation in children with the dystrophic form of EB. This led to correction of the inherent skin basement membrane defect and better skin integrity in some individuals. The challenge now is to precisely identify which BM cells contribute to skin recovery and what mechanisms are involved in tissue regeneration. An improved understanding of the key aspects of BM skin repair is likely to lead to significant health improvements for patients with EB and other skin diseases. </jats:p
    corecore