15 research outputs found

    A prospective cohort study of the long-term effects of CPAP on carotid artery intima-media thickness in Obstructive sleep apnea syndrome

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To examine the long-term effect of CPAP on carotid artery intima-media thickness (IMT) in patients with Obstructive sleep apnea syndrome(OSAS).</p> <p>Methods</p> <p>A prospective observational study over 12 months at a teaching hospital on 50 patients newly diagnosed with OSAS who received CPAP or conservative treatment (CT). Carotid IMT was assessed with B-mode Doppler ultrasound from both carotid arteries using images of the far wall of the distal 10 mm of the common carotid arteries at baseline, 6 months and 12 months.</p> <p>Measurements and results [mean (SE)]</p> <p>Altogether 28 and 22 patients received CPAP and CT respectively without significant differences in age 48.8(1.8) vs 50.5(2.0)yrs, BMI 28.2(0.7) vs 28.0(1.2)kg/m2, ESS 13.1(0.7) vs 12.7(0.6), AHI 38(3) vs 39(3)/hr, arousal index 29(2) vs 29(2)/hr, minimum SaO<sub>2 </sub>75(2) vs 77(2)% and existing co-morbidities. CPAP usage was 4.6(0.3) and 4.7(0.4)hrs/night over 6 months and 1 year respectively. Carotid artery IMT at baseline, 6 months, and 12 months were 758(30), 721(20), and 705(20)micron for the CPAP group versus 760(30), 770(30), and 778(30)micron respectively for the CT group, p = 0.002.</p> <p>Among those free of cardiovascular disease(n = 24), the carotid artery IMT at baseline, 6 months and 12 months were 722(40), 691(40), and 659(30)micron for the CPAP group (n = 12) with usage 4.5(0.7) and 4.7(0.7) hrs/night over 6 months and 12 months whereas the IMT data for the CT group(n = 12) were 660(20), 685(10), and 690(20)micron respectively, p = 0.006.</p> <p>Conclusions</p> <p>Reduction of carotid artery IMT occurred mostly in the first 6 months and was sustained at 12 months in patients with reasonable CPAP compliance.</p

    Mitochondrial Therapy Improves Limb Perfusion and Myopathy Following Hindlimb Ischemia

    Get PDF
    Critical limb ischemia is a devastating manifestation of peripheral arterial disease with no effective strategies for improving morbidity and mortality outcomes. We tested the hypothesis that cellular mitochondrial function is a key component of limb pathology and that improving mitochondrial function represents a novel paradigm for therapy. BALB/c mice were treated with a therapeutic mitochondrial-targeting peptide (MTP-131) and subjected to limb ischemia (HLI). Compared to vehicle control, MTP-131 rescued limb muscle capillary density and blood flow (64.7±11% of contralateral vs. 39.9±4%), and improved muscle regeneration. MTP-131 also increased electron transport system flux across all conditions at HLI day-7. In vitro, primary muscle cells exposed to experimental ischemia demonstrated markedly reduced (~75%) cellular respiration, which was rescued by MTP-131 during a recovery period. Compared to muscle cells, endothelial cell (HUVEC) respiration was inherently protected from ischemia (~30% reduction), but was also enhanced by MTP-131. These findings demonstrate an important link between ischemic tissue bioenergetics and limb blood flow and indicate that the mitochondria may be a pharmaceutical target for therapeutic intervention during critical limb ischemia

    Ezrin is required for adhesion and migration in invasive breast cancer

    No full text

    Image-guided radiation therapy using surgical clips for localization of colonic metastasis from thyroid cancer

    No full text
    Abstract A 67-year old man with a history of papillary thyroid cancer (PTC) presented with metastatic disease to the left colon in the form of a 6.1x1.0 cm bleeding, ulcerated mass. Radiopaque surgical clips were used as fiducial markers to localize the gross tumor volume (GTV) as well as the corresponding clinical target volume (CTV) and planning target volume (PTV). Daily cone beam computed tomography (CBCT) image guidance was utilized to verify the tumor position. Inter- and intrafraction movement of the tumor mass was assessed. Gastrointestinal bleeding was controlled using palliative image-guided radiation therapy (IGRT)

    A novel role for ezrin in breast cancer angio/lymphangiogenesis

    No full text
    Abstract Introduction Recent evidence suggests that tumour lymphangiogenesis promotes lymph node metastasis, a major prognostic factor for survival of breast cancer patients. However, signaling mechanisms involved in tumour-induced lymphangiogenesis remain poorly understood. The expression of ezrin, a membrane cytoskeletal crosslinker and Src substrate, correlates with poor outcome in a diversity of cancers including breast. Furthermore, ezrin is essential in experimental invasion and metastasis models of breast cancer. Ezrin acts cooperatively with Src in the regulation of the Src-induced malignant phenotype and metastasis. However, it remains unclear if ezrin plays a role in Src-induced tumour angio/lymphangiogenesis. Methods The effects of ezrin knockdown and mutation on angio/lymphangiogenic potential of human MDA-MB-231 and mouse AC2M2 mammary carcinoma cell lines were examined in the presence of constitutively active or wild-type (WT) Src. In vitro assays using primary human lymphatic endothelial cells (hLEC), an ex vivo aortic ring assay, and in vivo tumour engraftment were utilized to assess angio/lymphangiogenic activity of cancer cells. Results Ezrin-deficient cells expressing activated Src displayed significant reduction in endothelial cell branching in the aortic ring assay in addition to reduced hLEC migration, tube formation, and permeability compared to the controls. Intravital imaging and microvessel density (MVD) analysis of tumour xenografts revealed significant reductions in tumour-induced angio/lymphangiogenesis in ezrin-deficient cells when compared to the WT or activated Src-expressing cells. Moreover, syngeneic tumours derived from ezrin-deficient or Y477F ezrin-expressing (non-phosphorylatable by Src) AC2M2 cells further confirmed the xenograft results. Immunoblotting analysis provided a link between ezrin expression and a key angio/lymphangiogenesis signaling pathway by revealing that ezrin regulates Stat3 activation, VEGF-A/-C and IL-6 expression in breast cancer cell lines. Furthermore, high expression of ezrin in human breast tumours significantly correlated with elevated Src expression and the presence of lymphovascular invasion. Conclusions The results describe a novel function for ezrin in the regulation of tumour-induced angio/lymphangiogenesis promoted by Src in breast cancer. The combination of Src/ezrin might prove to be a beneficial prognostic/predictive biomarker for early-stage metastatic breast cancer
    corecore