34,188 research outputs found

    Prospect of D0 mixing and CPV at LHCb

    Full text link
    Precision measurements in charm physics offer a window into a unique sector of potential New Physics interactions. LHCb is poised to become a world leading experiment for charm studies, recording enormous statistics with a detector tailored for flavor physics. This article presents recent charm CPV and mixing studies from LHCb, including LHCb's first CP asymmetry measurement with 37 inverse pb of data collected in 2010. The difference of the CP asymmetries of D0 decays to the K-K+ and \pi-\pi+ final states is determined to be \Delta A_{CP} = (-0.28 +/- 0.70 +/- 0.25)%. Significant updates to the material presented at the 4th International Workshop on Charm Physics are included.Comment: 5 pages, 4 figures. Submitted to the proceedings of the 4th International Workshop on Charm Physics (Charm2010), Beijing, Chin

    Dynamics and Constraints of the Massive Gravitons Dark Matter Flat Cosmologies

    Full text link
    We discuss the dynamics of the universe within the framework of Massive Graviton Dark Matter scenario (MGCDM) in which gravitons are geometrically treated as massive particles. In this modified gravity theory, the main effect of the gravitons is to alter the density evolution of the cold dark matter component in such a way that the Universe evolves to an accelerating expanding regime, as presently observed. Tight constraints on the main cosmological parameters of the MGCDM model are derived by performing a joint likelihood analysis involving the recent supernovae type Ia data, the Cosmic Microwave Background (CMB) shift parameter and the Baryonic Acoustic Oscillations (BAOs) as traced by the Sloan Digital Sky Survey (SDSS) red luminous galaxies. The linear evolution of small density fluctuations is also analysed in detail. It is found that the growth factor of the MGCDM model is slightly different (∼1−4\sim1-4%) from the one provided by the conventional flat Λ\LambdaCDM cosmology. The growth rate of clustering predicted by MGCDM and Λ\LambdaCDM models are confronted to the observations and the corresponding best fit values of the growth index (γ\gamma) are also determined. By using the expectations of realistic future X-ray and Sunyaev-Zeldovich cluster surveys we derive the dark-matter halo mass function and the corresponding redshift distribution of cluster-size halos for the MGCDM model. Finally, we also show that the Hubble flow differences between the MGCDM and the Λ\LambdaCDM models provide a halo redshift distribution departing significantly from the ones predicted by other DE models. These results suggest that the MGCDM model can observationally be distinguished from Λ\LambdaCDM and also from a large number of dark energy models recently proposed in the literature.Comment: Accepted for publication in Physical Review D (12 pages, 4 figures

    An Exact Approach to Early/Tardy Scheduling with Release Dates

    Get PDF
    In this paper we consider the single machine earliness/tardiness scheduling problem with di?erent release dates and no unforced idle time. The problem is decomposed into a weighted earliness subproblem and a weighted tardiness subproblem. Lower bounding procedures are proposed for each of these subproblems, and the lower bound for the original problem is then simply the sum of the lower bounds for the two subproblems. The lower bounds and several versions of a branch-and-bound algorithm are then tested on a set of randomly generated problems, and instances with up to 30 jobs are solved to optimality. To the best of our knowledge, this is the first exact approach for the early/tardy scheduling problem with release dates and no unforced idle time.scheduling, early/tardy, release dates, lower bounds, branch-and-bound
    • …
    corecore