12,274 research outputs found
Extrapolation of Multiplicity distribution in p+p(\bar(p)) collisions to LHC energies
The multiplicity (N_ch) and pseudorapidity distribution (dN_ch/d\eta) of
primary charged particles in p+p collisions at Large Hadron Collider (LHC)
energies of \sqrt(s) = 10 and 14 TeV are obtained from extrapolation of
existing measurements at lower \sqrt(s). These distributions are then compared
to calculations from PYTHIA and PHOJET models. The existing \sqrt(s)
measurements are unable to distinguish between a logarithmic and power law
dependence of the average charged particle multiplicity () on \sqrt(s),
and their extrapolation to energies accessible at LHC give very different
values. Assuming a reasonably good description of inclusive charged particle
multiplicity distributions by Negative Binomial Distributions (NBD) at lower
\sqrt(s) to hold for LHC energies, we observe that the logarithmic \sqrt(s)
dependence of are favored by the models at midrapidity. The dN_ch/d\eta
versus \eta for the existing measurements are found to be reasonably well
described by a function with three parameters which accounts for the basic
features of the distribution, height at midrapidity, central rapidity plateau
and the higher rapidity fall-off. Extrapolation of these parameters as a
function of \sqrt(s) is used to predict the pseudorapidity distributions of
charged particles at LHC energies. dN_ch/d\eta calculations from PYTHIA and
PHOJET models are found to be lower compared to those obtained from the
extrapolated dN_ch/d\eta versus \eta distributions for a broad \eta range.Comment: 11 pages and 13 figures. Substantially revised and accepted for
publication in Journal of Physics
Quark-Gluon String Model Description of Baryon Production in K^{\pm}N Interactions
The process of baryon production in K p collisions at high energies is
considered in the framework of the Quark-Gluon String Model. The contribution
of the string-junction mechanism to the strange baryon production is analysed.
The results of numerical calculations are in reasonable agreement with the data
on inclusive spectra of p, Lambda, bar{Lambda}, and on the bar{Lambda}/Lambda
asymmetry. The predictions for Xi and Omega baryons are presented.Comment: 19 pages, 7 figure
Atomic mass dependence of \Xi^- and \overline{\Xi}^+ production in central 250 GeV \pi^- nucleon interactions
We present the first measurement of the atomic mass dependence of central
\Xi^- and \overline{\Xi}^+ production. It is measured using a sample of 22,459
\Xi^-'s and \overline{\Xi}^+'s produced in collisions between a 250 GeV \pi^-
beam and targets of beryllium, aluminum, copper, and tungsten. The relative
cross sections are fit to the two parameter function \sigma_0 A^\alpha, where A
is the atomic mass. We measure \alpha = 0.924+-0.020+-0.025, for Feynman-x in
the range -0.09 < x_F < 0.15.Comment: 10 pages, revtex, 2 figures, submitted to Phys. Rev.
Conductance fluctuations and weak localization in chaotic quantum dots
We study the conductance statistical features of ballistic electrons flowing
through a chaotic quantum dot. We show how the temperature affects the
universal conductance fluctuations by analyzing the influence of dephasing and
thermal smearing. This leads us to two main findings. First, we show that the
energy correlations in the transmission, which were overlooked so far, are
important for calculating the variance and higher moments of the conductance.
Second, we show that there is an ambiguity in the method of determination of
the dephasing rate from the size of the of the weak localization. We find that
the dephasing times obtained at low temperatures from quantum dots are
underestimated.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let
Relating parton model and color dipole formulation of heavy quark hadroproduction
At high center of mass energies, hadroproduction of heavy quarks can be
expressed in terms of the same color dipole cross section as low Bjorken-x deep
inelastic scattering. We show analytically that at leading order, the dipole
formulation is equivalent to the gluon-gluon fusion mechanism of the
conventional parton model. In phenomenological application, we employ a
parameterization of the dipole cross section which also includes higher order
and saturation effects, thereby going beyond the parton model. Numerical
calculations in the dipole approach agree well with experimental data on open
charm production over a wide range of energy. Dipole approach and next to
leading order parton model yield similar values for open charm production, but
for open bottom production, the dipole approach tends to predict somewhat
higher cross sections than the parton model.Comment: 16 pages, 4 figure
Electron-phonon effects and transport in carbon nanotubes
We calculate the electron-phonon scattering and binding in semiconducting
carbon nanotubes, within a tight binding model. The mobility is derived using a
multi-band Boltzmann treatment. At high fields, the dominant scattering is
inter-band scattering by LO phonons corresponding to the corners K of the
graphene Brillouin zone. The drift velocity saturates at approximately half the
graphene Fermi velocity. The calculated mobility as a function of temperature,
electric field, and nanotube chirality are well reproduced by a simple
interpolation formula. Polaronic binding give a band-gap renormalization of ~70
meV, an order of magnitude larger than expected. Coherence lengths can be quite
long but are strongly energy dependent.Comment: 5 pages and 4 figure
Lambda-Baryon Production in pi(+-)n Interactions
The process of Lambda-baryon production in pi-p collisions is considered. The
contribution of the string-junction mechanism to the strange baryon production
in meson-baryon scattering is anlysed. The results of numerical calculations in
the framework of the Quark-Gluon String model are in reasonable agreement with
the data.Comment: 10 pages and 5 figue
Magnetic Fluffy Dark Matter
We explore extensions of inelastic Dark Matter and Magnetic inelastic Dark
Matter where the WIMP can scatter to a tower of heavier states. We assume a
WIMP mass GeV and a constant splitting between
successive states keV. For the
spin-independent scattering scenario we find that the direct experiments CDMS
and XENON strongly constrain most of the DAMA/LIBRA preferred parameter space,
while for WIMPs that interact with nuclei via their magnetic moment a region of
parameter space corresponding to GeV and keV
is allowed by all the present direct detection constraints.Comment: 16 pages, 6 figures, added comments about magnetic moment form factor
to Sec 3.1.2 and results to Sec 3.2.2, final version to be published in JHE
- …