101 research outputs found
Synthesis, antimalarial activity in vitro, and docking studies of novel neolignan derivatives
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESThe absence of effective vaccines against malaria and the difficulties associated with controlling mosquito vectors have left chemotherapy as the primary control measure against malaria. However, the emergence and spread of parasite resistance to conventi903464472CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESSEM INFORMAÇÃOSEM INFORMAÇÃOSEM INFORMAÇÃOThe authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPES (CAPES) for financial suppor
Synthesis, characterization and in vitro anticancer activity of Novel 8,4’ : oxyneolignan analogues
Neolignans are a class of natural products with a wide range of biological effects. These substances are of great synthetic and biological interest, especially in searching for novel anticancer agents. In this paper, we report the synthesis of a new subclass of 8,4’-oxyneolignan analogues (β-ketoethers and β-ketoesters) and their cell viability assay on twenty four different cancer cells, among leukemias and carcinomas. Three compounds inhibited the growth of most human cancer cells. 2-Oxo-2-phenylethyl(2E)-3-[4-(2-oxo-2-phenylethoxy) phenyl]prop-2-enoate showed an antiproliferative activity superior to doxorubicin for U-87, U-138 MG and H1299 cell types and (E)-2-oxo-2-phenylethyl 3-(3-methoxy-4-(2-oxo-2-phenylethoxy)phenyl)acrylate was found to be very selective, demonstrating a growth inhibition of 92.0% against KG-1 cells. Furthermore, 1-oxo-1-phenylpropan-2-yl cinnamate exhibited significant inhibition activity in a range of 52.2 to 91.2% against twelve kinds of leukemia cell lines, revealing excellent results and very comparable to the reference drug
New insights into the antimicrobial action of cinnamaldehyde towards escherichia coli and its effects on intestinal colonization of mice
Escherichia coli is responsible for cases of diarrhea around the world, and some studies have shown the benefits of cinnamaldehyde in the treatment of bacterial disease. Therefore, the objective of this study was to evaluate the effects of cinnamaldehyde in mice colonized by pathogenic E. coli, as well as to provide more insights into its antimicrobial action mechanism. After determination of minimum inhibitory (MIC) and minimum bactericidal (MBC) concentrations, the interference of cinnamaldehyde in macromolecular pathways (synthesis of DNA, RNA, protein, and cell wall) was measured by incorporation of radioisotopes. The anti-adhesive properties of cinnamaldehyde towards E. coli 042 were evaluated using human epithelial type 2 (HEp-2) cells. Intestinal colonization was tested on mice, and the effect of cinnamaldehyde on Tenebrio molitor larvae. Cinnamaldehyde showed MIC and MBC values of 780 μg/mL and 1560 μg/mL, respectively; reduced the adhesion of E. coli 042 on HEp-2 cells; and affected all the synthetic pathways evaluated, suggesting that compost impairs the membrane/cell wall structure leading bacteria to total collapse. No effect on the expression of genes related to the SOS pathway (sulA and dinB1) was observed. The compound did not interfere with cell viability and was not toxic against T. molitor larvae. In addition, cinnamaldehyde-treated mice exhibited lower levels of colonization by E. coli 042 than the untreated group. Therefore, the results show that cinnamaldehyde is effective in treating the pathogenic E. coli strain 042 and confirm it as a promising lead molecule for the development of antimicrobial agents
Algorithms to predict cerebral malaria in murine models using the SHIRPA protocol
<p>Abstract</p> <p>Background</p> <p><it>Plasmodium berghei </it>ANKA infection in C57Bl/6 mice induces cerebral malaria (CM), which reproduces, to a large extent, the pathological features of human CM. However, experimental CM incidence is variable (50-100%) and the period of incidence may present a range as wide as 6-12 days post-infection. The poor predictability of which and when infected mice will develop CM can make it difficult to determine the causal relationship of early pathological changes and outcome. With the purpose of contributing to solving these problems, algorithms for CM prediction were built.</p> <p>Methods</p> <p>Seventy-eight <it>P. berghei</it>-infected mice were daily evaluated using the primary SHIRPA protocol. Mice were classified as CM+ or CM- according to development of neurological signs on days 6-12 post-infection. Logistic regression was used to build predictive models for CM based on the results of SHIRPA tests and parasitaemia.</p> <p>Results</p> <p>The overall CM incidence was 54% occurring on days 6-10. Some algorithms had a very good performance in predicting CM, with the area under the receiver operator characteristic (<sub>au</sub>ROC) curve ≥ 80% and positive predictive values (PV+) ≥ 95, and correctly predicted time of death due to CM between 24 and 72 hours before development of the neurological syndrome (<sub>au</sub>ROC = 77-93%; PV+ = 100% using high cut off values). Inclusion of parasitaemia data slightly improved algorithm performance.</p> <p>Conclusion</p> <p>These algorithms work with data from a simple, inexpensive, reproducible and fast protocol. Most importantly, they can predict CM development very early, estimate time of death, and might be a valuable tool for research using CM murine models.</p
Human and murine clonal CD8+ T cell expansions arise during tuberculosis because of TCR selection
The immune system can recognize virtually any antigen, yet T cell responses against several pathogens, including Mycobacterium tuberculosis, are restricted to a limited number of immunodominant epitopes. The host factors that affect immunodominance are incompletely understood. Whether immunodominant epitopes elicit protective CD8+ T cell responses or instead act as decoys to subvert immunity and allow pathogens to establish chronic infection is unknown. Here we show that anatomically distinct human granulomas contain clonally expanded CD8+ T cells with overlapping T cell receptor (TCR) repertoires. Similarly, the murine CD8+ T cell response against M. tuberculosis is dominated by TB10.44-11-specific T cells with extreme TCRß bias. Using a retro genic model of TB10.44-11-specific CD8+ Tcells, we show that TCR dominance can arise because of competition between clonotypes driven by differences in affinity. Finally, we demonstrate that TB10.4-specific CD8+ T cells mediate protection against tuberculosis, which requires interferon-? production and TAP1-dependent antigen presentation in vivo. Our study of how immunodominance, biased TCR repertoires, and protection are inter-related, provides a new way to measure the quality of T cell immunity, which if applied to vaccine evaluation, could enhance our understanding of how to elicit protective T cell immunity.This work was supported by the Portuguese Foundation for Science and Technology individual fellowship (CNA) www.fct.pt, a National Institutes of Health Grant R01 AI106725 (SMB) www.nih.gov, and a Center for AIDS Research Grant P30 AI 060354 (SMB) www.nih.gov. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Virulence in Murine Model Shows the Existence of Two Distinct Populations of Brazilian Vaccinia virus Strains
Brazilian Vaccinia virus had been isolated from sentinel mice, rodents and recently from humans, cows and calves during outbreaks on dairy farms in several rural areas in Brazil, leading to high economic and social impact. Some phylogenetic studies have demonstrated the existence of two different populations of Brazilian Vaccinia virus strains circulating in nature, but little is known about their biological characteristics. Therefore, our goal was to study the virulence pattern of seven Brazilian Vaccinia virus strains. Infected BALB/c mice were monitored for morbidity, mortality and viral replication in organs as trachea, lungs, heart, kidneys, liver, brain and spleen. Based on the virulence potential, the Brazilian Vaccinia virus strains were grouped into two groups. One group contained GP1V, VBH, SAV and BAV which caused disease and death in infected mice and the second one included ARAV, GP2V and PSTV which did not cause any clinical signals or death in infected BALB/c mice. The subdivision of Brazilian Vaccinia virus strains into two groups is in agreement with previous genetic studies. Those data reinforce the existence of different populations circulating in Brazil regarding the genetic and virulence characteristics
- …